Open Access

Generation of Tunable Focal Spot and Focal hole by Radially Polarized Axisymmetric Bessel-modulated Gaussian beam

N.Veerabagu Suresh, Department of ECE,Jayaraj Annapackiam CSI College of Engineering,Nazareth,TN, India K. Prabakaran, Department of Physics,Anna Univeirsity,Tirunelveli Region, TN, India R. Chandrasekar, Department of Physics, Government Arts College, Dharmapuri, TN, India Haresh M. Pandya, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India K.B. Rajesh rajeskb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India


J. Environ. Nanotechnol., Volume 2, No (Special Issue) (2013) pp. 107-112

https://doi.org/10.13074/jent.2013.02.nciset317

PDF


Abstract

In recent years, an Axisymmetric Bessel-modulated Gaussian beam with quadratic radial dependence (QBG beam) has attracted very much. In this paper, Focal shift in radially polarized QBG beam with radial variance phase wavefront is investigated theoretically byvector diffraction theory. The wavefront phase distribution is cosine function of radial coordinate. Simulation results show that the intensity distribution in focal region of the radially polarized QBG beam can be adjusted considerably by small beam parameter

Full Text

Reference


A. Belafhal, L. Dalil-Essakali, “Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system,” Opt. Commun. 177 (2000) 181–188.

B. Jia, X. Gan, M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13 (2005) 6821–6827.

B. Lü, X. Wang, Opt. Commun.204, 91 (2002).

C.F.R. Caron, R.M. Potvliege, “Bessel-modulated Gaussian beams with quadratic radial dependence,” Opt. Commun. 164 (1999) 83–93.

D.G. Grier, “A revolution in opticalmanipulation,” Nature 424 (2003) 810–816.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, S. Noda, Nature441, 946 (2006).

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Nature Photonics2, 501 (2008).

J.M. Ashkin, T. Dziedzic, Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330 (1989) 769–771.

K.S. Youngworth, T.G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7 (2000) 77–87.

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia, “Controlled rotation of optical trapped microscopic particles,” Science 292 (2001) 912–914.

M. Gu, “Advanced Optical Imaging Theory,” Springer, Heidelberg, 2000.

M.P. MacDonald, G.C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426 (2003) 421–424.

N. Hayazawa, Y. Saito, S. Kawata, “Detection and characterization of longitudinal field for tip enhanced Raman spectroscopy,” Appl. Phys. Lett. 85 (2004) 6239–6241.

P.B. Phual, W.J. Lai, “Simple coherent polarization manipulation scheme for generating high power radially polarized beam,” Opt. Express 15 (2007) 14251–14256.

Q. Zhan, J.R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10 (2002) 324–330.

R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91 (2003) 233901.

R. Hild, M.J. Yzuel,J.C.Escalera, High focal depth imaging of small structures,” Microelectron. Eng. 34 (1997) 195–214.

R. Oron, S. Blit, N. Davidson, A.A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77 (2000) 3322–3324.

V. Garces-Chaves, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneousmicromanipulation in multiple planes using a self reconstructing light beam,”Nature 419 (2002) 145–147.

W.T. Tang, E.Y.S. Yew, C.J.R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34 (2009) 2147–2149.

X Gao, M. Gao, Q. Zhan, J. Li, J. Wang, S. Zhuang, Optik 122, 671 (2011).

X. Gao, M. Gao, S. Hu, H. Guo, J. Wang, S. Zhuang, Optica Applicata40, 965 (2010).

X. Gao, S. Hu, H. Gu, J. Wang, “Focal shift of three-portion concentric piecewise cylindrical vector beam,” Optik 120 (2009) 519–523.

X. Wang, B. Lü, “The beam width of Besselmodulated Gaussian beams,” J. Mod. Opt. 50 (2003) 2107–2115.

X.Wang, B.Lü, “The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams,” Opt. Quant. Electron. 34 (2002) 1071–1077.

XiuminGao, Zhou Fei, Wendong Xu, FuxiGan, “Focus splitting induced by a pure phaseshifting apodizer,” Optics Communications 239 (2004) 55–59.

Yuichi Kozawa, Shunichi Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett. 31 (2006) 820–822.

Yuichi Kozawa, Shunichi Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24 (2007) 1793–1798.

Z. Hricha, A. Belafhal, “Focal shift in the axisymmetric Bessel-modulated Gaussian beam,” Opt. Commun. 255 (2005) 235–240.

Z. Mei, D. Zhao, X. Wei, F. Jing, Q. Zhu, Optik116, 521 (2005).

Contact Us

Powered by

Powered by OJS