Synthesis, Characterization and Biological Activity Studies of Semicarbazone Ligand
J. Environ. Nanotechnol., Volume 10, No 2 (2021) pp. 16-26
Abstract
The ligand 1-(3-ethoxy-2-hydroxybenzilidene-4-phenylsemicarbazide), (L1) was synthesized and characterized with the help of Infra-red, Ultra-violet, 1H NMR spectroscopy and X-ray crystallography. The spectral data also indicate that the ligand coordinates through the phenolic oxygen and the azomethine nitrogen atoms. Crystal data revealed that the semicarbazone act as bidentate ligand, making use of azomethine nitrogen atom and oxygen atom for co-ordination to the central metal atom. The Ligand L1 have been screened for their antibacterial activity against gram-positive bacterium Staphylococcus aureus and gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The ligand L1 exhibited appreciable activity against gram-positive bacteria Staphylococcus aureus and it is resistant to fungal species such as Candida albicans, Aspergillus niger and Macrophonia phaseolina. The free ligand L1 also shows higher IC50 values against MCF-7 cells indicating less anticancer activity.
Full Text
Reference
Abu-Khadra, A. S., Farag, R. S. and Abdel-Hady, A. E.-D. M., Synthesis, Characterization and antimicrobial activity of Schiff base (E)-N-(4-(2-Hydroxybenzylideneamino Phenylsulfonyl) acetamide metal complexes, Am. J. Anal. Chem., 07(03), 233–245 (2016).
https://dx.doi.org/10.4236/ajac.2016.73020
Ahmed, N., Riaz, M., Ahmed, A. and Bhagat, M., Synthesis, characterisation, and biological evaluation of Zn(II) complex with tridentate (NNO Donor) schiff base ligand, Int. J. Inorg. Chem., 2015, 01–05 (2015).
https://dx.doi.org/10.1155/2015/607178
El-Asmy, A. A. and Al-Hazmi, G. A. A., Synthesis and spectral feature of benzophenone-substituted thiosemicarbazones and their Ni(II) and Cu(II) complexes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 71(5), 1885–1890 (2009).
https://dx.doi.org/10.1016/j.saa.2008.07.005
Enyedy, É. A., Bognár, G. M., Nagy, N. V., Jakusch, T., Kiss, T. and Gambino, D., Solution speciation of potential anticancer metal complexes of salicylaldehyde semicarbazone and its bromo derivative, Polyhedron, 67, 242–252 (2014).
https://dx.doi.org/10.1016/j.poly.2013.08.053
Ghosh, K., Adhikari, S., Fröhlich, R., Petsalakis, I. D. and Theodorakopoulos, G., Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules, J. Mol. Struct., 1004(1–3), 193–203 (2011).
https://dx.doi.org/10.1016/j.molstruc.2011.08.004
Goel, S., Chandra, S. and Dwivedi, S. D., Spectroscopic and biological studies on newly synthesized Cobalt (II) and Nickel (II) complexes with 2-Acetyl coumarone semicarbazone and 2-Acetyl coumarone thiosemicarbazone, J. Chem., 2013, 01–07 (2013).
https://dx.doi.org/10.1155/2013/742915
Haque, R. A. and Salam, M. A., Synthesis, structural characterization and biological activities of organotin (IV) complexes with 5-allyl-2-hydroxy-3- methoxybenzaldehyde-4-thiosemicarbazone, J. Chem. Sci., 127(9), 1589–1597 (2015).
https://dx.doi.org/10.1007/s12039-015-0924-9
Hossain, S., Zakaria, C. M. and Kudrat-E-Zahan, Structural and biological activity studies on metal complexes containing thiosemicarbzone and isatin based schiff base: A review, Asian J. Res. Chem., 10(1), 6 (2017).
https://dx.doi.org/10.5958/0974-4150.2017.00002.5
Kalaivani, P., Prabhakaran, R., Poornima, P., Dallemer, F., Vijayalakshmi, K., Padma, V. V., Natarajan, K., Versatile Coordination Behavior of Salicylaldehydethiosemicarbazone in Ruthenium(II) Carbonyl Complexes: Synthesis, Spectral, X-ray, Electrochemistry, DNA Binding, Cytotoxicity, and Cellular Uptake Studies, Organometallics, 31(23), 8323–8332 (2012).
https://dx.doi.org/10.1021/om300914n
Kumar, B., Kumar, R., Kumar, B., Magnetic and Spectral Study of Some Mixed Ligand Complexes, Orient. J. Chem., 31(3), 1827–1830 (2015).
https://dx.doi.org/10.13005/ojc/310366
Leovac, V., Vojinovic-Jesic, L., Ivkovic, S., Rodic, M., Jovanovic, L., Holló, B., Mészáros-Szécsényi, K., Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II) bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC). Crystal structure of [Cu(PLITSC−H)H2O]Br•H2O, J. Serbian Chem. Soc., 79(3), 291–302 (2014).
https://dx.doi.org/10.2298/JSC130622084L
Li, S., Cao, X., Chen, C., Ke, S., Novel salicylic acid-oriented thiourea-type receptors as colorimetric chemosensor: Synthesis, characterizations and selective naked-eye recognition properties, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 96, 18–23 (2012).
https://dx.doi.org/10.1016/j.saa.2012.04.102
Mandal, S., Saha, R., Saha, M., Pradhan, R., Butcher, R. J., Saha, N. C., Synthesis, crystal structure, spectral characterization and photoluminescence property of three Cd(II) complexes with a pyrazole based Schiff-base ligand, J. Mol. Struct., 1110, 11–18 (2016).
https://dx.doi.org/10.1016/j.molstruc.2016.01.020
Mangamamba, T., Ganorkar, M. C., Swarnabala, G., Characterization of Complexes Synthesized Using Schiff Base Ligands and Their Screening for Toxicity Two Fungal and One Bacterial Species on Rice Pathogens, Int. J. Inorg. Chem., 2014, 01–22 (2014).
https://dx.doi.org/10.1155/2014/736538
Pahontu, E., Fala, V., Gulea, A., Poirier, D., Tapcov, V., Rosu, T., Synthesis and Characterization of Some New Cu(II), Ni(II) and Zn(II) Complexes with Salicylidene Thiosemicarbazones: Antibacterial, Antifungal and in Vitro Antileukemia Activity, Molecules, 18(8), 8812–8836 (2013).
https://dx.doi.org/10.3390/molecules18088812
Pahontu, E., Julea, F., Rosu, T., Purcarea, V., Chumakov, Y., Petrenco, P., Gulea, A., Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones, J. Cell. Mol. Med., 19(4), 865–878 (2015).
https://dx.doi.org/10.1111/jcmm.12508
Seena, E. B., Prathapachandra Kurup, M. R., Suresh, E., Crystal Study of Salicylaldehyde N(4)-Phenylthiosemicarbazone, J. Chem. Crystallogr., 38(2), 93–96 (2008).
https://dx.doi.org/10.1007/s10870-007-9268-8
Selvaganapathy, M., Raman, N., Pharmacological Activity of a Few Transition Metal Complexes: A Short Review, J. Chem. Biol. Ther., 1(2), 108 (2016).
https://dx.doi.org/10.4172/2572-0406.1000108
Shimazaki, Y., Arai, N., Dunn, T. J., Yajima, T., Tani, F., Ramogida, C. F., Storr, T., Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes, Dalt. Trans., 40(11), 2469-2479 (2011).
https://dx.doi.org/10.1039/c0dt01574a
Shirode, P. R., Yeole, P. M., Synthesis and Characterization of Mixed Ligand Complexes of transition metals with Schiff's bases, Chem. Sci. Trans.,3(3), 1186-1192 (2014).
https://dx.doi.org/10.7598/cst2014.801
Strehler, F., Korb, M., Lang, H., Crystal structure of paddle-wheel sandwich-type [Cu2 {(CH3)2 CO}{μ-Fe(η5-C5H4C≡N)2}3](BF4)2•(CH3)2CO, Acta Crystallogr., Sect. E: Crystallogr. Commun., 71(2), 244–247 (2015).
https://dx.doi.org/10.1107/S2056989015001760
Sumrra, S. H., Ibrahim, M., Ambreen, S., Imran, M., Danish, M., Rehmani, F. S., Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases, Bio. Inorg. Chem. Appl., 2014, 01–10 (2014).