Piezoelectric Ceramic-Polymer Composites as Smart Materials: An Overview of Preparation Methods
J. Environ. Nanotechnol., Volume 6, No 3 (2017) pp. 83-89
Abstract
Discrete types of compounds were involved in preparing smart materials. This study exclusively implicates only piezoelectric compounds owing to their innate piezoelectric effect. The ferroelectric natured materials: ceramic and polymer has been employed to fabricate efficient piezoelectric composites. In this study, efforts were taken to elucidate the methods involved in preparation of heterogeneous composites applied in the field of constructing transducers, sensors, actuators, etc.,. Their methods of preparation and applications vary from one another depending upon their connectivity and each of the methods successfully described with felicitous figures.
Full Text
Reference
Becker EW, Ehrfeld W, Hagmann P, et al Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron Eng 4:35–56(1986).
doi: 10.1016/0167-9317(86)90004-3
Bowen, L. J. and French, K. W., Fabrication of piezoelectric ceramic/polymer composites by injection molding. In: ISAF ’92: Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics. IEEE, 160–163(1992).
Bowen, L. J., Gentilman R. L. and Pham, H. T., Injection molded fine-scale piezoelectric composite transducers. In: Proceedings of IEEE Ultrasonics Symposium. IEEE, 499–503(1993).
Chang C-C, Pai C-L, Chen W-C, Jenekhe SA Spin coating of conjugated polymers for electronic and optoelectronic applications, Thin Solid Films, 479, 254–260(2005).
doi: 10.1016/j.tsf.2004.12.013
Gowdhaman, P., Annamalai, V. and Thakur, O. P., Piezo, ferro and dielectric properties of ceramic-polymer composites of 0-3 connectivity, Ferroelectrics, 493, 120–129(2016).
doi: 10.1080/00150193.2016.1134028
Hackenberger, W., Ming-Jen Pan and Kuban, D., Novel method for producing high frequency 2-2 composites from PZT ceramic. In: 2000 IEEE Ultrasonics Symposium. Proceedings, An International Symposium (Cat. No.00CH37121). IEEE, 969–972(2000).
Halloran, J. W., Freeform fabrication of ceramics, Br Ceram. Trans., 98, 299–303(1999).
doi: 10.1179/096797899680633
Henderson, R., Chandler, H. and Akisanya, A., Finite element modelling of cold isostatic pressing, J. Eur. Ceram. Soc., 20, 1121–1128(2000).
doi: 10.1016/S0955-2219(99)00280-0
Hoy, C., Van, Barda, A., Griffith, M. and Halloran, J. W., Microfabrication of Ceramics by Co-extrusion, J. Am. Ceram. Soc., 81,152–158(2005).
doi: 10.1111/j.1151-2916.1998.tb02307.x
Huebner, W., Reidmeyer, M. R., Stevenson, J. W. and Busse, L., Fabrication of 2-2 connectivity PZT/thermoplastic composites for high frequency linear arrays. In: Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics. IEEE, 206–209(1847).
Jain, A. K. J. P. and Sharma, A. K., Dielectric and piezoelectric properties of PVDF/PZT composites: A review, Polym. Eng. Sci., 55, 1589–1616(2015).
doi: 10.1002/pen.24088
Jain, A., Kumar, S. J. and Kumar, M. R., PVDF-PZT Composite Films for Transducer Applications, Mech. Adv. Mater. Struct., 21, 181–186(2014).
doi:10.1080/15376494.2013.834094
Klicker, K. A., Biggers, J. V. and Newnham, R. E., Composites of PZT and Epoxy for Hydrostatic Transducer Applications, J. Am. Ceram. Soc. 64, 05–09(1981).
doi:10.1111/j.1151-2916.1981.tb09549.x
Klicker, K. A., Schulze, W. A. and Biggers, J. V., Piezoelectric Composites with 3-1 Connectivity and a Foamed Polyurethane Matrix, J. Am. Ceram. Soc., 65, 208-210(1982).
doi: 10.1111/j.1151-2916.1982.tb09953.x
Koray Akdogan, E., Mehdi Allahverdi and A. S., Piezoelectric Composites for Sensor and Actuator Applications E, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 52, 746–765(2005).
doi:10.1007/s100190050096
Lubitz, K., Wolff, A. and Preu, G., PcI2: New piezoelectric composites for ultrasonic transducers, Ferroelectrics, 133, 21–26(1992).
doi:10.1080/00150199208217972
Mirza, M. S., Liu, Q. and Yasin, T., Dice-and-fill processing and characterization of microscale and high-aspect-ratio (K, Na) NbO3-based 1-3 lead-free piezoelectric composites, Ceram. Int., 42, 10745–10750(2016).
doi: 10.1016/j.ceramint.2016.03.198
Seema, A., Dayas, K. R. and Varghese, J. M., PVDF-PZT-5H composites prepared by hot press and tape casting techniques, J. Appl. Polym. Sci., 106, 146–151(2007).
doi: 10.1002/app.26673
Siemann, U., Solvent cast technology - A versatile tool for thin film production, Prog. Colloid. Polym. Sci., 130, 01–14(2005).
doi: 10.1007/b107336
Taghaddos, E., Hejazi, M., Safari, A., Lead-free piezoelectric materials and ultrasonic transducers for medical imaging, J. Adv. Dielectr., 5, 1530002(2015).
doi: 10.1142/S2010135X15300029
Tok, A. I., Boey, F. Y., Khor, K., Tape casting of high dielectric ceramic composite substrates for microelectronics application, J. Mater. Process. Technol., 89–90, 508–512(1999).
doi:10.1016/S0924-0136(99)00131-4
Tyona, M. D., A theoritical study on spin coating technique, Adv. Mater. Res., 2, 195–208(2013).
doi: 10.12989/amr.2013.2.4.195
Yeon Kwon, D., Seon Kwon, J., Hun Park, S., A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells, Sci. Rep., 5, 12721(2015).
doi: 10.1038/srep12721