Open Access

Focusing of Radially Polarized Lorentz gaussian beam with one on axis Optical vortex

R.C. Saraswathi, Department of Physics, Government Arts College, Dharmapuri, TN, India. K. Prabakaran, Department of Physics, Anna University, Tirunelveli, TN, India. K.B. Rajesh, rajeskb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India.
Haresh M. Pandya Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India.


J. Environ. Nanotechnol., Volume 2, No 3 (2013) pp. 21-24

https://doi.org/10.13074/jent.2013.09.132027

PDF


Abstract

Focusing properties of radially polarized Lorentz–Gauss beam with one on-axis optical vortex was investigated by vector diffraction theory. Results show that intensity distribution in the focal region can be altered considerably by charge number of the optical vortex and the beam parameters. Many novel focal patterns may occur, Such as Peak-centered, and other focal shapes which is potentially useful in optical tweezers, material processing and laser printing.

Full Text

Reference


Bandres, M.A. and Gutiérrez-Vega, J.C.,  Cartesian beams, Opt. Lett., 32, 3459–3461(2007).

http://dx.doi.org/10.1364/OL.32.003459

Du, W., Zhao, C., Cai, Y., Propagation of Lorentz and Lorentz–Gauss beams through an apertured fractional Fourier transform optical system, Opt. Lasers Eng., 49, 25–31 (2011).

http://dx.doi.org/10.1016/j.optlaseng.2010.09.004

Dumke, W. P., “The angular beam divergence in double-heterojunction lasers with very thin active regions,” IEEE J. Quantum Electron.QE- 11, 400–402, (1975).

Fu Rui, Dawei Zhang, Mei Ting, Xiumin Gao, Songlin Zhuang “Focusing of linearly polarized Lorentz–Gauss beam with one optical vortex. optik (article in press)

Gawhary, O.E., and Severini, S., “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A, Pure Appl. Opt.8, 409–414, (2006).

http://dx.doi.org/10.1088/1464-4258/8/5/007

Jiang, Y., Huang, K., Lu, X., Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle, Opt. Express 19, 9708– 9713 (2011).

http://dx.doi.org/10.1364/OE.19.009708

Naqwi, A., and Durst, F., “Focus of diode laser beams: a simple mathematical model,” Appl. Opt. 29, 1780–1785, (1990).

http://dx.doi.org/10.1364/AO.29.001780

Richards, B., and Wolf, E., “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A Math. Phys. Sci.253, 358– 379, (1959).

http://dx.doi.org/10.1098/rspa.1959.0200

Torre, A., Evans, W. A. B., Gawhary, O. E., and Severini, S., “Relativistic Hermite polynomials and Lorentz beams,” J. Opt. A, Pure Appl. Opt.10, 115007, (2008).

http://dx.doi.org/10.1088/1464-4258/10/11/115007

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express 7, 77-87, (2000).

http://dx.doi.org/10.1364/OE.7.000077

Yu, H., Xiong, L., Lü, B., Nonparaxial Lorentz and Lorentz–Gauss beams, Optik 121 1455–1461 (2010) .

http://dx.doi.org/10.1016/j.ijleo.2009.02.005

Zhao, C., Cai, Y., Paraxial propagation of Lorentz and Lorentz–Gauss beams in uniaxial crystals orthogonal to the optical axis, J. Mod. Opt. 57, 375–384 (2010).

http://dx.doi.org/10.1080/09500341003640079

Zhou, G. Q., and Chu, X. X., “Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere,” Opt. Express 18(2), 726–731, (2010).

http://dx.doi.org/10.1364/OE.18.000726

Zhou, G. Q., “Focal shift of focused truncated Lorentz-Gauss beam,” J. Opt. Soc. Am. A.25, 2594–2599, (2008).

http://dx.doi.org/10.1364/JOSAA.25.002594

Zhou, G. Q., “Nonparaxial propagation of a Lorentz-Gauss beam,” J. Opt. Soc. Am. B 26, 141–147, (2009).

http://dx.doi.org/10.1364/JOSAB.26.000141

Zhou, G. Q., “Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system,” Opt. Express 18, 4637–4643 (2010).

http://dx.doi.org/10.1364/OE.18.004637

Zhou, G., Analytical vectorial structure of a Lorentz–Gauss beam in the far field, Appl. Phys. B 93 , 891–899 (2008) .

http://dx.doi.org/10.1007/s00340-008-3254-5

Zhou, G., Beam propagation factors of a Lorentz–Gauss beam, Appl. Phys. B 96, 149–153 (2009).

http://dx.doi.org/10.1007/s00340-009-3460-9

Zhou, G., Fractional Fourier transform of Lorentz–Gauss beams, J. Opt. Soc. Am. A ., 26 350–355 (2009).

http://dx.doi.org/10.1364/JOSAA.26.000350

Contact Us

Powered by

Powered by OJS