Open Access

Effect of Astigmatism on the Tight Focusing of Azimuthally Polarized Lorentz-Gauss Vortex Beam

R. Murugesan, Department of Physics, Erode Arts College, Erode, TN, India. N. Pasupathi, epartment of Physics, Erode Arts College, Erode, TN, India. M. Udhayakumar, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India. M. Lavanya, Department of Physics, PSGR Krishnammal College for Women, Coimbatore, TN, India. R. C. Saraswathi, Department of Physics, Government Arts College, Dharmapuri, TN, India. K. B. Rajesh rajeshkb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India.


J. Environ. Nanotechnol., Volume 5, No 2 (2016) pp. 25-29

https://doi.org/10.13074/jent.2016.06.162194

PDF


Abstract

Effect of astigmatism on the tight focusing properties of azimuthally polarized Lorentz-Gauss vortex beam is investigated numerically by the vector diffraction theory. Thus for non-vortex Lorentz beam the presence of astigmatism largely deform the focal structure and shifted the maximum intensity axially. However for the vortex Lorentz beam axially shifting with slightly deformation is observed. The author expect such a study is important in practical applications such as optical tweezers, laser printing and material processing.

Full Text

Reference


Biss, D. P. and Brown, T. G., Primary aberrations in focused radially polarized vortex beams, Opt. Express, 12, 384-393(2004).

https://doi.org/10.1364/OPEX.12.000384

Kant, R., An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations, I: Spherical aberration, curvature of field, and distortion, J. Mod. Opt., 40(11), 2293-2310(1993).

https://doi.org/10.1080/09500349314552301

Kant, R., An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma, J. Mod. Opt., 42(2), 299-320(1995).

https://doi.org/10.1080/09500349514550291

Li, J., Chen,Y., Xu, S., Wang, Y., Zhou, M., Zhao, Q., Xin, Y. and Chen, F., Propagation properties of lorentz beam in uniaxial crystals orthogonal to the optical axis, Opt. Laser Technol., 43(3), 506-514(2011).

https://doi.org/10.1016/j.optlastec.2010.07.007

Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems. II. Structure of the Image field in an aplanatic system., Proc. R. Soc. London, Ser. A, 253(1274), 358-379(1959).

https://doi.org/10.1098/rspa.1959.0200

Roichman, Y., Waldron, A., Gardel, E. and Grier, D. G., Optical traps with geometric aberrations, Appl. Opt., 45(15), 3425-3429(2006).

https://doi.org/10.1364/AO.45.003425

Unno, Y., Ebihara, T. and Levenson, M. D., Impact of mask errors and lens aberrations on the image formation of a vortex mask, J. Microlithogr. Microfabr. Microsyst., 4(2), 023006-023017(2005).

https://doi.org/10.1117/1.1897392

Visser, T. D. and. Wiersma, S. H., Spherical aberration and the electromagnetic field in high-aperture systems, J. Opt. Soc. Am. A, 8(9), 1404-1410(1991).

https://doi.org/10.1364/JOSAA.8.001404

Xiumin Gao, Dawei Zhang, Mei Ting and Songlin Zhuang, Focus shaping of linearly polarized lorentz beam with sine-azimuthal variation wave front, Optik., 124(15), 2079-2084(2013).

https://doi.org/10.1016/j.ijleo.2012.06.061

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express., 7(2), 77-87(2000).

https://doi.org/10.1364/OE.7.000077

Yu, H., Xiong, L. and Lü, B., Nonparaxial lorentz and lorentz-gauss beams, Optik., 121(16), 1455-1461(2010).

https://doi.org/10.1016/j.ijleo.2009.02.005

Zhou P., Wang X., Ma, Y. and Liu, Z., Propagation properties of a lorentz beam array, Appl. Opt., 49(13), 2497-2503(2010).

https://doi.org/10.1364/AO.49.002497

Contact Us

Powered by

Powered by OJS