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ABSTRACT 

Effect of astigmatism on the tight focusing properties of azimuthally polarized Lorentz–Gauss   vortex beam is 

investigated numerically by the vector diffraction theory. Thus for non-vortex Lorentz beam the presence of astigmatism 

largely deform the focal structure and shifted the maximum intensity axially. However for the vortex Lorentz beam axially 

shifting with slightly deformation is observed. The author expect such a study is important in practical applications such as 

optical tweezers, laser printing and material processing. 
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1. INTRODUCTION  

A Lorentz beam array is a good model to study 

a coherent diode laser array, and a detailed research of 

the propagation properties of a Lorentz beam array was 

presented by Zhou et al. 2010. They deduced the closed-

form intensity distribution in the spatial frequency 

domain and investigated the effect of phase errors on the 

far-field intensity patent. Recently, the Lorentz beams 

were also extended to the non-paraxial regime (Yu et al. 

2010), in which propagation properties is illustrated and 

compared with numerical examples (Li et al. 2011). 

Recently, the Lorentz–Gauss beam has been introduced 

as a new kind of realizable beam (Roichman, et al. 2006). 

The Lorentz beam can be regarded as a special case of 

Lorentz-Gauss beams. With the spatial extension being 

the same, the angular spreading of a Lorentz-Gaussian 

distribution is higher than that of a Gaussian description 

(Unno et al. 2005). The presence of aberrations in the 

focusing system modifies the structure of the beam in the 

focal region, and this may cause serious problems in 

many applications (Visser et al. 1993; Liu et al. 2005). 

Structural modification in the focused structure of the 

doughnut beam due to aberration has also been briefly 

mentioned by Willig et al. in the context of STED 

microscopy. The effect of primary aberrations on the 

focal structure of the beam has been investigated for a 

vortex-free beam (Visser et al. 1991; Kant 1993). 

Evaluated numerically the intensity distributions and 

encircled energy of focused singular beams at the focal 

plane in the presence of optical aberrations, such as the 

spherical aberration, defocusing, astigmatism and coma. 

More recently, the phase singularities of high numerical 

aperture dark-hollow Gaussian beams in the focal region 

were dealt with in Ref. (Biss et al. 2004), the tight 

focusing of an Lorentz-Gauss beam, we have 

investigated the effect of primary astigmatism  on the 

focused structure of azimuthally polarized Lorentz Gauss 

vortex beam investigated by vector diffraction theory. 

2. THEORY 

 Azimuthally polarized Lorentz-Gaussian beam 

focused through a high NA lens system focused. The 

analysis was performed on the basis of Richards and 

Wolf’s vectorial diffraction method (Richards et al. 

1959)  widely used for high-NA lens system at arbitrary 

incident polarization. In the case of the incident 

polarization, adopting the cylindrical coordinates r,z,φ 

and the notations (Youngworth et al. 2004), the electric 

field E(r,z,φ) in the vicinity of the focal region can be 

written as   
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Where arcsin( )NA = ,NA is the numerical aperture 

and n is the index of refraction between the lens and the 

sample. ( )A  Describes the Lorentz-Gaussian beam, 

this function is given by (Xiumin Gao et al.  2013). 
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Where wx = ωx/rp is called relative beam waist in x 

coordinate direction. rp is the outer radius of optical 

aperture in focusing system, f is focal length of the 

focusing system. NA is the numerical aperture of the 

focusing system 

Ast denotes the wave front aberration function in the beam 

which can be expressed as (Kant, 1991; 1995)
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Where the astigmatism coefficient AAst is in units of the 

wave length of the beam 

 

 

Fig. 1 (a,b,c):  Azimuthally  polarized Lorentz-Gaussian beam, (d-l) azimuthally polarized Lorentz-Gaussian beam effect of 
astigmatism Ast for NA = 0.95, wx = 0.3, wy= 0.3,and n = 0.Fig.(a,d,g,j) corresponding to Ast=0,0.5,1 and 1.5 respectively. 
Fig.1 (b,e,h,k)are corresponding intensity calculated in the radial axis. Fig.(e,f,i.l) are corresponding axial intensity 
distribution 

3. RESULT & DISCUSSION 

We perform the integration of Eq. (1) 

numerically using parameters  =1, and NA =0.95. Here, 

for simplicity, we assume that the refractive index n = 

1.For all calculation in the length unit is normalized to λ 

and the energy density is normalized to unity. It is 

observed from the  Fig.1 the increasing the astigmatism 

coefficient result in axial shifting of the focal hole ,when 

Ast=0.5λ.it is also noted that  further increasing the 
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astigmatism coefficient  to 1.0λ further increasing 

shifting and   deformation by off axial elongation in the 

tail part is observed. When Ast=1.5λ further shifting and 

elongation of tail part is observed. 

Fig. 2 shows the same as Fig.1 but forwx=0.3 

and wy=1.2.  It is noted that both axial shifting off axial 

elongation of tail part of is observed for the increasing the 

astigmatism coefficient however it is observed that 

deformation is much in this case when to compared to the 

previous case. 

Fig.3 shows the  same as Fig.1 but  for wx=0.3 

and wy=0.3,n=1.  It is noted that increasing the 

astigmatism coefficient Ast=0.5λ, slightly shifted to the 

focal spot in the axial direction. further increasing the 

astigmatism coefficient  to 1.0λ results in  radial 

elongation and axial shifting. The position of   maximum 

intensity is observed at 1λ,2λ and 2.4λ corresponding 

Ast=0.5λ,1.0λ and 1.5λ.  

 

Fig. 2 (a,b,c):  Radially polarized Lorentz–Gaussian beam, (d-l) azimuthally polarized Lorentz–Gaussian beam effect of 
astigmatism Ast for NA = 0.95, wx = 0.3, wy= 1.2,and n = 0.(a,d,g,j) corresponding to Ast=0,0.5,1 and 1.5 respectively. 
Fig.1(b,e,h,k)are corresponding intensity calculated in the radial axis.(e,f,i.l) are corresponding axial intensity distribution 
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Fig. 3(a,b,c): Aazimuthally  polarized Lorentz-Gaussian beam, (d-l) azimuthally polarized Lorentz-Gaussian beam effect of 
astigmatism Ast for NA = 0.95, wx = 0.3, wy= 0.3,and n = 1. Fig.(a,d,g,j) corresponding to Ast=0,0.5,1 and 1.5 
respectively.(b,e,h,k)are corresponding intensity calculated in the radial axis. (e,f,i.l) are corresponding axial intensity 
distribution 

 

Fig. 4 (a,b,c):  Azimuthally  polarized Lorentz–Gaussian beam, (d-l) azimuthally polarized Lorentz-Gaussian beam effect of 
astigmatism Ast for NA = 0.95, wx = 0.3, wy=1.2,and n = 1.Fig.(a,d,g,j) corresponding to Ast=0,0.5,1 and 1.5 
respectively.(b,e,h,k)are corresponding intensity calculated in the radial axis. (e,f,i.l) are corresponding axial intensity 
distribution 
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Fig. 4 shows the same as Fig.1 but for n=1. As 

if in the previous case position shift and axial elongation 

of the tail part is observed for the increasing astigmatism 

coefficient. Thus for non-vortex Lorentz beam the 

presence of astigmatism largely deform the focal 

structure   and shifted the maximum intensity axially. 

However for the vortex Lorentz beam axially shifting 

with slightly deformation is observed.   

4. CONCLUSION 

Tight focusing properties of azimuthally 

polarized Lorentz–Gauss vortex beam with effect of 

astigmatism are investigated numerically by the vector 

diffraction theory. Thus for non-vortex Lorentz beam the 

presence of astigmatism largely deform the focal 

structure and shifted the maximum intensity axially. 

However for the vortex Lorentz beam axially shifting 

with slightly deformation is observed. Hence The author 

expect such a study is important in practical applications 

such as optical tweezers, laser printing and material 

processing 
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