Open Access

Tight Focusing Properties of Azimuthally Polarized Lorentz Gaussian Beam

R. C. Saraswathi, Department of Physics, Government Arts College, Dharmapuri, Tamilnadu, India. K. B. Rajesh, rajeskb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India.
M. Udhayakumar Department of Physics, Chikkanna Government Arts College, Tiruppur, Tamilnadu, India.


J. Environ. Nanotechnol., Volume 4, No 4 (2015) pp. 52-55

https://doi.org/10.13074/jent.2015.12.154172

PDF


Abstract

The tight focusing properties of azimuthally polarized Lorentz Gauss beam is investigated theoretically by Vector Diffraction Theory. It is observed from the results that Non-Vortex Lorentz Gauss beam generated a sub wavelength focal hole under the tight focusing condition. It is also noted that FWHM of the focal hole andits focal depth suffers little change with the change in Lorential parameter. However when annular obstruction is introduced, the focal hole seems to get confined and improvement in the focal depth is observed. Focusing of Lorentz Gauss beam one optical vortex shows the formation of focal spot of sub wavelength size. It is also noted introduction of annular obstruction improved focal depth and reduced the spot size of the generated focal spot for the Lorential parameters considered.

Full Text

Reference


Bandres, M. A. and Gutiérrez, J. C., Vega, Cartesian beams, Opt. Lett., 32(23), 3459-3461(2007).

doi:10.1364/OL.32.003459

Casey, H. C.,  Pannish, M. B., Heterostructure lasers, Academic Press, New York, 1978.

Du, C., Zhao, Y. and Cai, Propagation of lorentz and Lorentz-Gauss beams through an apertured fractional   fourier transform optical system, Opt. Lasers Eng., 49, 25-31 (2011).

doi:10.1016/j.optlaseng.2010.09.004

Dawei Zhang, Mei Ting,  Xiumin Gao and Songlin Zhuang, Focusing of linearly polarized Lorentz-Gauss beam with one optical vortex, Optik, 124,   2969-2973(2012).

Dumke, W. P., Angular beam divergence in double-heterojunction lasers with very thin active regions, IEEE J. Quantum Electron., 11(7), 400-402(1975).

doi:10.1109/JQE.1975.1068627

Gawhary, O. E. and Severini, S., Lorentz beams and symmetry properties in paraxial optics, J. Opt. A, Pure Appl. Opt., 8, 409-414(2006).

doi:10.1088/1464-4258/8/5/007

Li, J.  Y., Chen, S., Xu, Y., Wang, M., Zhou, Q., Zhao, Y., Xin, F. and Chen, Propagation properties of Lorentz beam in uniaxial crystals orthogonal to the optical axis, Opt. Laser Technol., 43 ,506-514(2011).

doi:10.1016/j.optlastec.2010.07.007

Naqwi, A. and Durst, F., Focusing of diode laser beams: A simple mathematical model, Appl. Opt., 29(12), 1780-1785(1990).

doi:10.1364/AO.29.001780

Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. London, Ser. A, 253, 358-379(1959).

doi:10.1098/rspa.1959.0200

Saraswathi, R. C.,  Prabakaran, K., Rajesh, K. B. and Jaroszewicz, Z., Tight focusing properties of radially polarized Lorentz-Gaussian beam, Optik, 125,  5339-5342(2014).

doi:10.1016/j.ijleo.2014.06.058

Torre, A., Evans, W. A. B., Gawhary, O. El. and Severini, S., Relativistic Hermite polynomials and Lorentz beams, J. Opt. A: Pure Appl. Opt., 10, 1-16(2008).

Xiumin Gao, Dawei Zhang, Mei Ting, Fu Rui, Qiufang Zhan and  Songlin Zhuang, Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront,  Optik, 124, 2079- 2084(2013).

doi:10.1016/j.ijleo.2012.06.061

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express., 7, 77-87(2000).

doi.org/10.1364/OE.7.000077

Yu, H., Xiong, L. and Lü, B., Nonparaxial Lorentz and Lorentz-Gauss beams, Optik, 121, 1455-1461(2010).

doi:10.1016/j.ijleo.2009.02.005

Zhou, G., Fractional fourier transform of Lorentz beams, Chin. Phys. B, 18, 2779-2784(2009).

doi:10.1088/1674-1056/18/7/026

Contact Us

Powered by

Powered by OJS