Open Access

Investigation of Azimuthally Polarized Bessel-modulated Gaussian Beam with Annular Obstruction

K. Gokulakrishnan, gk39762@gmail.com
Department of ECE, Regional Center, Anna University: Tirunelveli Region, Tirunelveli, TN, India.
T. V. Sivasubramonia Pillai Department of Physics, University College of Engineering, Nagercoil, TN, India


J. Environ. Nanotechnol., Volume 4, No 1 (2015) pp. 32-36

https://doi.org/10.13074/jent.2015.03.144119

PDF


Abstract

Investigation of annular obstructed azimuthally polarized Bessel-modulated Gaussian beam (QBG) in the focal region of high NA lens, based on vectorial diffraction theory. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.

Full Text

Reference


Zhan, Q., Cylindrical vector beams: From mathematical concepts to applications, Advances in Optics and Photonics, 1(1), 1–57 (2009).

doi:10.1364/AOP.1.000001

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7(2), 77–87 (2000).

doi:10.1364/OE.7.000077

Gao, X., Wang, J., Gu, H. and Xu, W., Focusing properties of concentric piecewise cylindrical vector beam, Optik, 118(6), 257–265 (2007).

doi:10.1016/j.ijleo.2006.10.006

Zhou, G., Ni, Y. and Zhang, Z., Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field, Optics Communications, 272(1), 32–39 (2007).

doi:10.1016/j.optcom.2006.11.044

Quabis, S., Dorn, R., Eberler, M., GlÓ§ckl, O. and Leuchs, G., The focus of light – theoretical calculation and experimental tomographic reconstruction, Appl. Phys., 72(1), 109-113 (2001).

doi:10.1007/s003400000451

Helseth, L. E., Optical vortices in focal regions, Opt. Commun, 229(6), 85-91 (2004).

doi:10.1016/j.optcom.2003.10.043

Grosjean, T. and Courjon, D., Smallest focal spots, Opt. Commun., 272(2), 314-319 (2007).

doi:10.1016/j.optcom.2006.11.043

Ganic, D., Gan, X. and Gu, M., Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Opt Express, 11(21), 2747-2752 (2003).

doi:10.1364/OE.11.002747

Zhan, Q. and Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Express, 10(7), 324-331 (2002).

doi:10.1364/OE.10.000324

Helseth, L. E., Smallest focal hole, Opt. Commun., 257(1), 1-8 (2006).

doi:10.1016/j.optcom.2005.07.019

Zhan, Q., Properties of circularly polarized vortex beams, Opt. Lett., 31(7), 867-869 (2006).

doi:10.1364/OL.31.000867

Bokor, N. and Davidson, N., A three dimensional dark focal spot uniformly surrounded by light, Opt. Commun., 279(2), 279-229 (2007).

doi:10.1016/j.optcom.2007.07.014

Jia, B., Gan, X. and Gu, M., Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD, Opt. Express, 13(18), 6821–6827 (2005).

doi:10.1364/OPEX.13.006821

Ashkin, J. M., Dziedzic, T. and Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330(6150), 769-771 (2003).

doi:10.1038/330769a0

Grier, D. G., A revolution in optical manipulation, Nature, 424(6950), 810–816 (2003).

doi:10.1038/nature01935

MacDonald, M. P., Spalding, G. C. and Dholakia, K., Microfluidic sorting in an optical lattice, Nature, 426(6965), 421–424 (2003).

doi:10.1038/nature02144

Garces-Chaves, V., McGloin, D., Melville, H., Sibbett, W. and Dholakia, K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature, 419(6903), 145–147 (2002).

doi:10.1038/nature01007

Paterson, L., MacDonald, M. P., Arlt, J., Sibbett, W., Bryant, P. E., and Dholakia, K., Controlledrotation of optical trapped microscopic particles, Science, 292(5518), 912–914 (2001).

doi:10.1126/science.1058591

Gao, X., Zhou, F., Xu, W. and Gan, F., Focus splitting induced by a pure phase-shifting apodizer, Optics Communications, 239(3), 55–59 (2004).

doi:10.1016/j.optcom.2004.05.029

Caron, C. F. R., Potvliege, R. M., Bessel-modulated Gaussian beams with quadratic radial dependence, Optics Communications., 164(3), 83-93 (1999).

doi:10.1016/S0030-4018(99)00174-1

Hricha, Z., Belafhal, A., Focal shift in the axisymmetric Bessel-modulated Gaussian beam, Optics Communications, 255(4), 235–240 (2005).

doi:10.1016/j.optcom.2005.06.025

Wang, X., LÜ, B., The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams, Optical and Quantum Electronics, 34(10), 1071–1077 (2002).

doi:10.1023/A:1020403507805

Belafhal, A., Dalil, L. E., Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system, Optics Communications, 177(6), 181–188 (2000).

doi:10.1016/S0030-4018(00)00600-3

Lü, B., Wang, X., Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems, Optics Communications, 204(6), 91–97 (2002).

doi:10.1016/S0030-4018(02)01214-2

Mei, Z., Zhao, D., Wei, X., Jing, F. and Zhu, Q., Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture, Optik, 116(11), 521–526 (2005).

doi:10.1016/j.ijleo.2005.05.003

Wang, X. and Lü, B., The beam width of Bessel-modulated Gaussian beams, J. Mod. Opt., 50(14), 2107–2115 (2003).

doi:10.1080/09500340308234562

Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics, 2(8), 501 (2008).

doi:10.1038/nphoton.2008.127

Dorn, R., Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91(5), 233901-233904 (2003).

doi:10.1103/PhysRevLett.91.233901

Yew, E. Y. S. and Sheppard, C. J. R., Polarization conversion in confocal microscopy with radially polarized illumination, Opt. Lett., 34(14), 2147–2149 (2009).

doi:10.1364/OL.34.002147

Gu, M., Advanced Optical Imaging Theory, Springer, Heidelberg, (2000).

doi:10.1007/978-3-540-48471-4

Suresh, P., Mariyal, C., Rajesh, K. B., Pillai, T. V. S., Polarization effect of cylindrical vector beam in high numerical aperture lens axicon systems, Optik, 124(13), 1632–1636 (2013).

doi:10.1016/j.ijleo.2012.05.049

Suresh, P., Mariyal, V, Saraswathi, Rajesh, K. B., Pillai, T. V. S. and Jaroszewicz, Z., Tightly focusing of spirally polarized Quadratic Bessel Gaussian beam through a dielectric interface, Optik, 125(3), 1264-1266 (2014).

doi:10.1016/j.ijleo.2013.08.039 36

Contact Us

Powered by

Powered by OJS