Effect of Coma on Tightly Focused Linearly Polarized Lorentz Gaussian Beam
J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 26-30
Abstract
In this paper attention is given to the effects of primary coma on the linearly polarized Lorentz– Gauss beam with one on-axis optical vortex was investigated by vector diffraction theory. It is observed that by properly choosing the topological charge one can obtain many novel focal patterns suitable for optical tweezers, laser printing and material process. However, it is observed that the focusing objective with coma generates structural modification and positional shift of the generated focal structure.
Full Text
Reference
Abramochkin, E. and Volostnikov, V., Beam transformations and nontransformed beams, Opt Commun. 83, 123–135 (1991).
doi:10.1016/0030-4018(91)90534-K
Beijersbergen, M. W., Coerwinkel, R.P.C., Kristensen, M. and Woerdman, JP. Helical-wavefront laser beams produced with a spiral phase plate. Opt Commun. 112, 321–327 (1994).
doi:10.1016/0030-4018(94)90638-6
Biss, D.P. and Brown T G, Primary aberrations in focused radially polarized vortex beams, Opt. Express. 12, 384-393(2003).
doi:10.1364/OPEX.12.000384
Braat, J J M, Dirksen, P., Ajem, J., Van de A S., Extended Nijboer representation of the vector field in the focal region of an aberrated high aperture optical system, J Opt Soc Am A. 20, 2281- 2292 (2003).
doi:10.1364/JOSAA.20.002281
Cai and Y., He, S. Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system. Appl Phys B. 84, 493–500 (2006).
doi:10.1007/s00340-006-2321-z
Dong X, A. Naqwi A Far-field distribution of doubleheterostruture diode laser beams, Appl. Opt. 32, 4491–4494 (1993).
doi:10.1364/AO.32.004491
Furhapter, S., Jesacher, A., Bernet, S. and Ritsch- Marte, M. Spiral interferometry, Opt Lett. 30, 1953–1953 (2005).
doi:10.1364/OL.30.001953
Gahagan, K. T., Swartzlander, G. A., Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J Opt Soc Am B. 16, 533–537 (1999).
doi:10.1364/JOSAB.16.000533
Ganic D, Gan X, Gu M Focusing of doughnut laser beams by a high numerical aperture objective in free space, Opt. Express 11, 2747–2752 (2003).
doi:10.1364/OE.11.002747
Saraswathi, R. C., Prabakaran, K., Rajesh, K. B., Haresh M. Pandya, Focusing of Radially Polarized Lorentz gaussian beam with one on axis Optical vortex, J. Environ. Nanotechnol., 2(3), 21-24 (2013)
doi:10.13074/jent.2013.09.132027
Gawhary, O E., and Severini, S. Lorentz beams and symmetry properties in paraxial optics, J. Opt. A, Pure Appl. Opt.8 409–14 (2006).
doi:10.1088/1464-4258/8/5/007
Heckenberg, N. R, McDuff, R., Smith C. P., White, A.G. Generation of optical phase singularities by computer-generated holograms, Opt Lett.17,221– 223 (1992).
doi:10.1364/OL.17.000221
Indebetouw G. Optical vortices and their propagation, J Mod Opt. 40, 73–87 (1993).
doi:10.1080/09500349314550101
Kotlayar, V. V., Almazov, A. A., Khonina, S.N., Soifer, V. A, Elfstrom, H. and Turunen, J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate, J Opt Soc Am A. 22,849–861 (2005).
doi:10.1364/JOSAA.22.000849
Naqwi, A., and Durst, F., Focus of diode laser beams: a simple mathematical model, Appl. Opt. 29 1780– 1785 (1990)
doi:10.1364/AO.29.001780
Rozas, D., Law, CT. and Swartzlander, G.A. Propagation dynamics of optical vortices. J Opt Soc Am B.14, 3054–3065 (1997).
doi:10.1364/JOSAB.14.003054
Senthilkumaran, P. Optical phase singularities in detection of laser beam collimation, Appl Opt.42,6314–6320 (2003).
doi:10.1364/AO.42.006314
Singh, R. K., Senthilkumaran, P., Singh K. Influence of astigmatism and defocusing on the focusing of a singular beam, Opt Commun. 270 128–138(2006).
doi:10.1016/j.optcom.2006.09.038
Tamm, C., Frequency locking of two transverse optical modes of a laser, Phys Rev A., 38, 5960– 5963(1988).
doi:10.1103/PhysRevA.38.5960
Wada, A., Ohtani, T., Miyamoto, Y. and Takeda, M. Propagation analysis of the Laguerre–Gaussian beam with astigmatism, J Opt Soc Am A. 22 2746– 2755, (2005).
doi:10.1364/JOSAA.22.002746
Zhou, G Q., Nonparaxial propagation of a Lorentz- Gauss beam, J. Opt. Soc. Am. B, 26(1), 141–47 (2010).
doi:10.1364/JOSAB.26.000141