Open Access

Effect of Coma on Tightly Focused Linearly Polarized Lorentz Gaussian Beam

K.B.Rajesh, rajeskb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India
R. C. Saraswathi, Department of Physics, Government Arts College, Dharmapuri, TN, India Teresa Anitha Department of Physics, Government Arts College, Dharmapuri, TN, India


J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 26-30

https://doi.org/10.13074/jent.2014.12.144126

PDF


Abstract

In this paper attention is given to the effects of primary coma on the linearly polarized Lorentz– Gauss beam with one on-axis optical vortex was investigated by vector diffraction theory. It is observed that by properly choosing the topological charge one can obtain many novel focal patterns suitable for optical tweezers, laser printing and material process. However, it is observed that the focusing objective with coma generates structural modification and positional shift of the generated focal structure.

Full Text

Reference


Abramochkin, E. and Volostnikov, V., Beam transformations and nontransformed beams, Opt Commun. 83, 123–135 (1991).

doi:10.1016/0030-4018(91)90534-K

Beijersbergen, M. W., Coerwinkel, R.P.C., Kristensen, M. and Woerdman, JP. Helical-wavefront laser beams produced with a spiral phase plate. Opt Commun. 112, 321–327 (1994).

doi:10.1016/0030-4018(94)90638-6

Biss, D.P. and Brown T G, Primary aberrations in focused radially polarized vortex beams, Opt. Express. 12, 384-393(2003).

doi:10.1364/OPEX.12.000384

Braat, J J M, Dirksen, P., Ajem, J., Van de A S., Extended Nijboer representation of the vector field in the focal region of an aberrated high aperture optical system, J Opt Soc Am A. 20, 2281- 2292 (2003).

doi:10.1364/JOSAA.20.002281

Cai and Y., He, S. Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system. Appl Phys B. 84, 493–500 (2006).

doi:10.1007/s00340-006-2321-z

Dong X, A. Naqwi A Far-field distribution of doubleheterostruture diode laser beams, Appl. Opt. 32, 4491–4494 (1993).

doi:10.1364/AO.32.004491

Furhapter, S., Jesacher, A., Bernet, S. and Ritsch- Marte, M. Spiral interferometry, Opt Lett. 30, 1953–1953 (2005).

doi:10.1364/OL.30.001953

Gahagan, K. T., Swartzlander, G. A., Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J Opt Soc Am B. 16, 533–537 (1999).

doi:10.1364/JOSAB.16.000533

Ganic D, Gan X, Gu M Focusing of doughnut laser beams by a high numerical aperture objective in free space, Opt. Express 11, 2747–2752 (2003).

doi:10.1364/OE.11.002747

Saraswathi, R. C., Prabakaran, K., Rajesh, K. B., Haresh M. Pandya, Focusing of Radially Polarized Lorentz gaussian beam with one on axis Optical vortex, J. Environ. Nanotechnol., 2(3), 21-24 (2013)

doi:10.13074/jent.2013.09.132027

Gawhary, O E., and Severini, S. Lorentz beams and symmetry properties in paraxial optics, J. Opt. A, Pure Appl. Opt.8 409–14 (2006).

doi:10.1088/1464-4258/8/5/007

Heckenberg, N. R, McDuff, R., Smith C. P., White, A.G. Generation of optical phase singularities by computer-generated holograms, Opt Lett.17,221– 223 (1992).

doi:10.1364/OL.17.000221

Indebetouw G. Optical vortices and their propagation, J Mod Opt. 40, 73–87 (1993).

doi:10.1080/09500349314550101

Kotlayar, V. V., Almazov, A. A., Khonina, S.N., Soifer, V. A, Elfstrom, H. and Turunen, J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate, J Opt Soc Am A. 22,849–861 (2005).

doi:10.1364/JOSAA.22.000849

Naqwi, A., and Durst, F., Focus of diode laser beams: a simple mathematical model, Appl. Opt. 29 1780– 1785 (1990)

doi:10.1364/AO.29.001780

Rozas, D., Law, CT. and Swartzlander, G.A. Propagation dynamics of optical vortices. J Opt Soc Am B.14, 3054–3065 (1997).

doi:10.1364/JOSAB.14.003054

Senthilkumaran, P. Optical phase singularities in detection of laser beam collimation, Appl Opt.42,6314–6320 (2003).

doi:10.1364/AO.42.006314

Singh, R. K., Senthilkumaran, P., Singh K. Influence of astigmatism and defocusing on the focusing of a singular beam, Opt Commun. 270 128–138(2006).

doi:10.1016/j.optcom.2006.09.038

Tamm, C., Frequency locking of two transverse optical modes of a laser, Phys Rev A., 38, 5960– 5963(1988).

doi:10.1103/PhysRevA.38.5960

Wada, A., Ohtani, T., Miyamoto, Y. and Takeda, M. Propagation analysis of the Laguerre–Gaussian beam with astigmatism, J Opt Soc Am A. 22 2746– 2755, (2005).

doi:10.1364/JOSAA.22.002746

Zhou, G Q., Nonparaxial propagation of a Lorentz- Gauss beam, J. Opt. Soc. Am. B, 26(1), 141–47 (2010).

doi:10.1364/JOSAB.26.000141

Contact Us

Powered by

Powered by OJS