Open Access

Focusing Properties of Radially Polarized Annular Multi Gaussian Beam by High NA Parabolic Mirror

K. B. Rajesh, rajeskb@gmail.com
Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India
R. Chandrasekaran, Department of Physics, Government Arts College, Dharmapuri, TN, India N. Umamageswari, Department of Physics, Research and Development Centre, Bharathiyar University, Coimbatore,TN, India M. Udhayakumar, Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India J. William Charles Department of Physics, Chikkanna Government Arts College, Tiruppur, TN, India


J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 01-03

https://doi.org/10.13074/jent.2014.12.144121

PDF


Abstract

The focal properties of radially polarized annular multi Gaussian beams focused with a high numerical aperture parabolic mirror are numerically investigated. The tightly focused radially polarized annular multi gaussian beam beams by a high numerical aperture parabolic mirror have possible applications in particle acceleration, optical trapping and manipulating, single molecule imaging and high resolution imaging microscopy.

Full Text

Reference


Ashkin, A., Dziedzic, J., Bjorkholm, J. and Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters. 11, 288-290 (1986).

doi:10.1364/OL.11.000288

Bokor, N. and Davidson, N. A., three dimensional dark focal spot uniformly surrounded by light, Optics Communications. 279, 229-234 (2007).

doi:10.1016/j.optcom.2007.07.014

Chen, W. B. and Zhan, Q. W., Three-dimensional focus shaping with cylindrical vector beams, Optics Communications. 265, 411-417 (2006).

doi:10.1016/j.optcom.2006.04.066

Hayazawa, N., Saito, Y. S. and Kawata, S., Detection and characterization of longitudinal field for tipenhanced Raman spectroscopy, Applied Physics Letters. 85, 6239-6241, (2004).

doi:10.1063/1.1839646

Quabis, S., Dorn, R., Eberler, M., Glöckl, O. and Leuchs, G., Focusing light to a tighter spot, Optics Communications, 179, 1-7 (2000).

doi:10.1016/S0030-4018(99)00729-4

Romea, R. D. and Kimura, W. D., Modeling of inverse Cerenkov laser acceleration with axicon laserbeam focusing, Physical Review D, 42, 1807- 1818 (1990).

doi:10.1103/PhysRevD.42.1807

N. Veerabagu Suresh, K. Prabakaran, R. Chandrasekar, Haresh M.Pandya, K. B. Rajesh, Generation of Tunable Focal Spot and Focal hole by Radially Polarized Axisymmetric Bessel-modulated Gaussian beam, J. Environ. Nanotechnol., 2(2013), 107-112 (2013)

doi:10.13074/jent.2013.02.nciset317

Sheppard, C. J. R. and Choudhury, A. Annular pupils, radial polarization, and super resolution, Applied optics, 43, 4322-4327 (2004).

doi:10.1364/AO.43.004322

Kawauchi, H., Yonezawa, K. and Kozawa, Y. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Optics Letters, 32, 1839-1841 (1989).

doi:10.1364/OL.32.001839

Nong, C. J., Feng, X. Q., and Gang, W., Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam, Chinese Phys. B 20, 114211-114215 (2011).

doi:10.1088/1674-1056/20/11/114211

Novotny, L., Beversluis, M. R., Youngworth, K. S. and Brown, T.G., Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Physical Review B, 68, 115433-115443 (2003).

doi:10.1103/PhysRevB.68.115433

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7, 77-87 (2000).

doi:10.1364/OE.7.000077

Yew, E. Y. S. and Sheppard, C. J. R. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams, Opt. Communications, 275, 453-457 (2007).

doi:10.1016/j.optcom.2007.03.065

Zhan, Q., Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Exp. 10, 324- 331 (2002).

doi:10.1364/OE.10.000324

Contact Us

Powered by

Powered by OJS