Focusing Properties of Radially Polarized Annular Multi Gaussian Beam by High NA Parabolic Mirror
J. Environ. Nanotechnol., Volume 3, No (Special Issue) (2014) pp. 01-03
Abstract
The focal properties of radially polarized annular multi Gaussian beams focused with a high numerical aperture parabolic mirror are numerically investigated. The tightly focused radially polarized annular multi gaussian beam beams by a high numerical aperture parabolic mirror have possible applications in particle acceleration, optical trapping and manipulating, single molecule imaging and high resolution imaging microscopy.
Full Text
Reference
Ashkin, A., Dziedzic, J., Bjorkholm, J. and Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters. 11, 288-290 (1986).
doi:10.1364/OL.11.000288
Bokor, N. and Davidson, N. A., three dimensional dark focal spot uniformly surrounded by light, Optics Communications. 279, 229-234 (2007).
doi:10.1016/j.optcom.2007.07.014
Chen, W. B. and Zhan, Q. W., Three-dimensional focus shaping with cylindrical vector beams, Optics Communications. 265, 411-417 (2006).
doi:10.1016/j.optcom.2006.04.066
Hayazawa, N., Saito, Y. S. and Kawata, S., Detection and characterization of longitudinal field for tipenhanced Raman spectroscopy, Applied Physics Letters. 85, 6239-6241, (2004).
doi:10.1063/1.1839646
Quabis, S., Dorn, R., Eberler, M., Glöckl, O. and Leuchs, G., Focusing light to a tighter spot, Optics Communications, 179, 1-7 (2000).
doi:10.1016/S0030-4018(99)00729-4
Romea, R. D. and Kimura, W. D., Modeling of inverse Cerenkov laser acceleration with axicon laserbeam focusing, Physical Review D, 42, 1807- 1818 (1990).
doi:10.1103/PhysRevD.42.1807
N. Veerabagu Suresh, K. Prabakaran, R. Chandrasekar, Haresh M.Pandya, K. B. Rajesh, Generation of Tunable Focal Spot and Focal hole by Radially Polarized Axisymmetric Bessel-modulated Gaussian beam, J. Environ. Nanotechnol., 2(2013), 107-112 (2013)
doi:10.13074/jent.2013.02.nciset317
Sheppard, C. J. R. and Choudhury, A. Annular pupils, radial polarization, and super resolution, Applied optics, 43, 4322-4327 (2004).
doi:10.1364/AO.43.004322
Kawauchi, H., Yonezawa, K. and Kozawa, Y. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Optics Letters, 32, 1839-1841 (1989).
doi:10.1364/OL.32.001839
Nong, C. J., Feng, X. Q., and Gang, W., Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam, Chinese Phys. B 20, 114211-114215 (2011).
doi:10.1088/1674-1056/20/11/114211
Novotny, L., Beversluis, M. R., Youngworth, K. S. and Brown, T.G., Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Physical Review B, 68, 115433-115443 (2003).
doi:10.1103/PhysRevB.68.115433
Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7, 77-87 (2000).
doi:10.1364/OE.7.000077
Yew, E. Y. S. and Sheppard, C. J. R. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams, Opt. Communications, 275, 453-457 (2007).
doi:10.1016/j.optcom.2007.03.065
Zhan, Q., Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Exp. 10, 324- 331 (2002).
doi:10.1364/OE.10.000324