Open Access

Design and Optimization of Solar Powered Irrigation System using Artificial Intelligent Techniques

Santosh Singh Raghuwanshi, santoshsraghuwanshi@gmail.com
Department of Computer Science and Engineering, Medicaps University, Indore, MP, India
Safdar Sardar Khan , Department of Computer Science and Engineering, Medicaps University, Indore, MP, India Ratnesh Litoriya Department of Computer Science and Engineering, Medicaps University, Indore, MP, India


J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 144-157

https://doi.org/10.13074/jent.2025.03.2511260

PDF


Abstract

The main objective of this study is the design and optimization of a solar photovoltaic (PV) powered irrigation system using artificial intelligence (AI) techniques. To employ AI approaches, including fuzzy logic, particle swarm optimization (PSO), artificial neural networks (ANN), and machine learning (support vector machine (SVM)), as controllers in maximum power point tracking (MPPT) systems to optimize PV systems. These techniques are also employed to regulate speed and torque in a moto-pump system. PV power generation has been predicted using the ML approach. The results indicate that the machine learning-based photovoltaic system achieves maximum power under varying weather conditions. At a reference speed of 300, the average speeds of Fuzzy, PSO, ANN, and ML are 292.3 rad/sec, 294.6 rad/sec, 298.4 rad/sec, and 300 rad/sec, respectively. In terms of overshoot and settling time, ML performs better. The ML-based system has 99.6% efficiency and is continuously maintained. The ML technique improves the performance of PV systems compared to the PSO, fuzzy, and ANN techniques. This work is highly beneficial for government agencies and stakeholders involved in irrigation systems.

Full Text

Reference


Abid, M. Z., Muhammad, Y., Saleem, U. and Muhammad, Hassan., Design, Sizing and Economic Feasibility of a Hybrid PV/Diesel/Battery Based Water Pumping System for Farmland, Int. J. Green Energy, 19(6), 614–37(2022).

https://doi.org/10.1080/15435075.2021.1954007

Agarwal, A., Kumar, N. and Dubey, P., Machine Learning Based Maximum Power Prediction for Photovoltaic System, Indian J. Pure Appl. Phy., 60 (10), 892–898(2022).

https://doi.org/10.56042/ijpap.v60i10.62197

Ahmad, K.R., Farrukh, S., Logavani, K., Catherine, T. J., Shimpy, R., Singh, M., Prabu, R. T., Bala, B. S. and Adane, K., Maximum Power Point Tracking of PV Grids Using Deep Learning, Int. J. Photoenergy, 2022(1), 1123251(2022).

https://doi.org/10.1155/2022/1123251

Bacanin, N., Luka, J., Zivkovic, M., Kandasamy, V., Milos, A., Deveci, M. and Ivana, S., Multivariate Energy Forecasting via Metaheuristic Tuned Long-Short Term Memory and Gated Recurrent Unit Neural Networks, Inf. Sci., 642, 119122(2023).

https://doi.org/10.1016/j.ins.2023.119122

Bandhu, K. C., Litoriya, R., Khatri, M., Milind, K. and Prakhar, S., A Novel Approach for Better Career Counselling Utilizing Machine Learning Techniques, Wireless Pers. Commun., 138, 2523-2560(2024).

https://doi.org/10.1007/s11277-024-11612-3

Deo, R. C., X. Wen, and F. Qi., A Wavelet-Coupled Support Vector Machine Model for Forecasting Global Incident Solar Radiation Using Limited Meteorological Dataset, Appl. Energy, 168, 568–593(2016).

https://doi.org/10.1016/j.apenergy.2016.01.130

Der, L. S., Liu, H. D., Wang, M. H. and Wu, C. C., A Novel Strategy for Multitype Fault Diagnosis in Photovoltaic Systems Using Multiple Regression Analysis and Support Vector Machines, Energy Rep., 12, 2824–2844(2024).

https://doi.org/10.1016/j.egyr.2024.08.074

Gupta, M. and Bhargava, A., Optimal Design of Hybrid Renewable-Energy Microgrid System: A Techno-Economic–Environment–Social–Reliability Perspective, Energy Rep., 8(1), 66–83(2024).

https://doi.org/10.1093/ce/zkad069

Habib, S., Liu, H., Tamoor, M., Hussien, A. G., Zawbaa, H. M. and Salah, K., Technical Modelling of Solar Photovoltaic Water Pumping System and Evaluation of System Performance and Their Socio-Economic Impact, Heliyon, 9(5), e16105(2023).

https://doi.org/10.1016/j.heliyon.2023.e16105

Hafdaoui, H., Kouadri, B. E. A., Chahtou, A., Bouchakour, S. and Belhaouas, N., Analyzing the Performance of Photovoltaic Systems Using Support Vector Machine Classifier, Sustainable Energy Grids Net., 29, 100592(2022).

https://doi.org/10.1016/j.segan.2021.100592

Jayasankar, K. C., Anandhakumar, G. and Kalaimurugan, A., Fuzzy Logic Controller-Based Intelligent Irrigation System Using Solar Radiation Data, J. Environ. Nanotechnol., 13(2), 37–45(2024).

https://doi.org/10.13074/jent.2024.06.242586

Khan, K., Rashid, S., Mansoor, M., Khan, A., Hasan, R., Zafar, H. M. Akhtar, N. and Raza, H., Data-driven Green Energy Extraction: Machine Learning-Based MPPT Control with Efficient Fault Detection Method for the Hybrid PV-TEG System, Energy Rep., 9, 3604–3623(2023).

https://doi.org/10.1016/j.egyr.2023.02.047

Khasawneh, H. J., Zaid, A. G., Waseem, M. A. K., Ahmad, M. A. H. and Zaid, M. A., Creating Optimized Machine Learning Pipelines for PV Power Generation Forecasting Using the Grid Search and Tree-Based Pipeline Optimization Tool, Cogent Eng., 11(1), 2323818(2024).

https://doi.org/10.1080/23311916.2024.2323818

Kirubakaran, S. V. and Singaravelu, S., Enhancing Solar Photovoltaic Systems through Advanced MPPT Control: A Comparative Analysis of AI-Based Techniques and a Novel ML-Based SVR Model for Optimal Performance and Stability, SSRG Int. J. Electron. Commun. Eng., 11(1), 39–52(2024).

https://doi.org/10.14445/23488549/IJECE-V11I1P104

Koç, C., A study on operation problems of hydropower plants integrated with irrigation schemes operated in Turkey, Int. J. Green Energy, 15(2), 129–135(2018).

https://doi.org/10.1080/15435075.2018.1427591

Li, J., Herdem, M. S., Nathwani, J. and Wen, J. Z., Methods and Applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in Smart Energy Management, Energy AI, 11, 100208(2023).

https://doi.org/10.1016/j.egyai.2022.100208

Liu, W., Shen, Y., Aungkulanon, P., Binh, L. N., Meza, A. A., Yulineth, C. E. and Ghalandari, M., 2023. Machine Learning Applications for Photovoltaic System Optimization in Zero Green Energy Buildings, Energy Rep., 9, 2787–2796(2023).

https://doi.org/10.1016/j.egyr.2023.01.114

Mahesh, P. V., Meyyappan, S and Alla, R. R., Maximum Power Point Tracking Using Decision-Tree Machine-Learning Algorithm for Photovoltaic Systems, Clean Energy, 6(5), 762–775(2022a).

https://doi.org/10.1093/ce/zkac057

Mahesh, P. V., Meyyappan, S. and Alla, R. R., Maximum Power Point Tracking with Regression Machine Learning Algorithms for Solar PV Systems, Int. J. Renewable Energy Res., 12(3), 1327–1338(2022b).

https://doi.org/10.20508/ijrer.v12i3.13249.g8517

Meena, R. S., Anoop, S., Shilpa, U., Rohit, B., Neeraj, K. G., Israr, M., Kothari, D. P., Chiranjeevi, C. and Prasath, S., Artificial Intelligence-Based Deep Learning Model for the Performance Enhancement of Photovoltaic Panels in Solar Energy Systems, Int. J. Photoenergy, 2022(1), 3437364(2022).

https://doi.org/10.1155/2022/3437364

Mohammad, A. and Mahjabeen, F., Revolutionizing Solar Energy with AI-Driven Enhancements in Photovoltaic Technology, J. Multidiscip. Sci., 2(4), 1174–1187(2023).

Omer, Z. M., and Shareef., H., An Adjustable Machine Learning Gradient Boosting-Based Controller for PV Applications, Intell. Syst. Appl., 19, 200261(2023).

https://doi.org/10.1016/j.iswa.2023.200261

Ourici, A. and Abderaouf, B., Maximum Power Point Tracking in a Photovoltaic System Based on Artificial Neurons, Indian J. Sci. Technol., 16(23), 1760–1767(2023).

https://doi.org/10.17485/ijst/v16i23.648

Pan, M., Chao, L., Ran, G., Huang, Y., You, H., Tangsheng, G. and Qin, F., Photovoltaic Power Forecasting Based on a Support Vector Machine with Improved Ant Colony Optimization, J. Cleaner Prod., 277, 123948(2020).

https://doi.org/10.1016/j.jclepro.2020.123948

Pandey, M., Litoriya, R. and Pandey, P., Analyzing Student Dropout Factors in Engineering Courses Using a Fuzzy Based Decision Support System, Multimedia Tools Appl., 83, 87045-87069(2024).

https://doi.org/10.1007/s11042-024-19810-8

Pandian, P. S., Gnanapoo, T., Denosha, R., Kumar, S. R., and Sivaiah, B. V., Real-Time Fault Detection in Solar PV Systems Using Hybrid ANN – SVM Machine Learning Algorithm, Int. J. Intel. Syst. Appl. Eng., 12(22), 1367-1374(2024).

Raghuwanshi, S. S., and Khare, V., Sizing and Modelling of Stand-Alone Photovoltaic Water Pumping System for Irrigation, Energy Environ., 29(4), 473-491(2018).

https://doi.org/10.1177/0958305X17752739

Raghuwanshi, S. S., Raghuwanshi, P., Masih, A. and Singh, P., Modeling and Optimization of Hybrid Renewable Energy with Storage System Using Flamingo Swarm Intelligence Algorithms, Energy Storage, 5(7), e470(2023).

https://doi.org/10.1002/est2.470

Raj, V., Dotse, S. Q., Sathyajith, M., Petra, M. I. and Yassin, H., Ensemble Machine Learning for Predicting the Power Output from Different Solar Photovoltaic Systems, Energies, 16(2), 671(2023).

https://doi.org/10.3390/en16020671

Sharmin, R., Chowdhury, S. S., Abedin, F. and Rahman, K. M., Implementation of an MPPT Technique of a Solar Module with Supervised Machine Learning, Front. Energy Res., 10, 2296-5980(2022).

https://doi.org/10.3389/fenrg.2022.932653

Shah, H., Nilesh, G. C. and Jaydeep, C., AI-Based Fault Recognition and Classification in the IEEE 9-Bus System Interconnected to PV Systems, Smart Sci., 12(1), 185–197(2024).

https://doi.org/10.1080/23080477.2023.2285275

Sinha, M. K., Piyush, C., Shrunkhala, S., Halve, P. M. and Santosh, S. R., Design and Optimization of Hybrid Solar PV Energy System for Rural Areas in the Narmada Valley, India, Int. J. Ambient Energy, 45(1), 2402773(2024).

https://doi.org/10.1080/01430750.2024.2402773

Verma, R., Bhatia, R. and Raghuwanshi, S. S., Optimization and Performance Enhancement of Renewable Energy Microgrid Energy System Using Pheasant Bird Optimization Algorithm, Sustainable Energy Technol. Assess., 66, 103801(2024).

https://doi.org/10.1016/j.seta.2024.103801

Venkat, R. A., Suresh, B. G. and Satish, K. P., Islanded Micro-Grid under Variable Load Conditions for Local Distribution Network Using Artificial Neural Network, Smart Sci., 12(4), 622-637(2024).

https://doi.org/10.1080/23080477.2024.2358672

Contact Us

Powered by

Powered by OJS