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ABSTRACT 

The main objective of this study is the design and optimization of a solar photovoltaic (PV) powered irrigation 

system using artificial intelligence (AI) techniques. To employ AI approaches, including fuzzy logic, particle swarm 

optimization (PSO), artificial neural networks (ANN), and machine learning (support vector machine (SVM)), as controllers 

in maximum power point tracking (MPPT) systems to optimize PV systems. These techniques are also employed to regulate 

speed and torque in a moto-pump system. PV power generation has been predicted using the ML approach. The results 

indicate that the machine learning-based photovoltaic system achieves maximum power under varying weather conditions. 

At a reference speed of 300, the average speeds of Fuzzy, PSO, ANN, and ML are 292.3 rad/sec, 294.6 rad/sec, 298.4 rad/sec, 

and 300 rad/sec, respectively. In terms of overshoot and settling time, ML performs better. The ML-based system has 99.6% 

efficiency and is continuously maintained. The ML technique improves the performance of PV systems compared to the 

PSO, fuzzy, and ANN techniques. This work is highly beneficial for government agencies and stakeholders involved in 

irrigation systems. 
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1. INTRODUCTION

Solar radiation produces approximately a billion 

kWh of energy annually, which can be converted into 

heat and electricity with an efficiency of 10 to 25%. Solar 

PV cells convert sunlight into electricity, and their 

production has increased by over 40% annually since 

2020, making them a rapidly growing energy technology. 

The agriculture industry in India consumes 

approximately 17-26% of total electricity (Koç, 2018). 

The implementation of a solar PV water pumping system 

(SPVWPS) is an optimal solution for irrigation in 

developing countries. These pumps convert solar energy 

into electricity, running a set of motor pumps compatible 

with a solar array. They are commonly used in wells, 

borewells, ponds, and canals. According to the PM-

KUSUM plan, a total of 2,18,539 solar pumps have been 

successfully implemented in agricultural areas across 

India as of March 31, 2023. The current cost to farmers 

to install a solar pump under the initiative is 

approximately Rs. 1.5 lakhs. The main drawbacks of 

SPVWPS are its high cost and low efficiency, ranging 

from 8% to 18%. AI technology has wholly changed the 

agricultural industry. AI plays a vital role in improving 

SPVWPS performance. In India, SPVWPS is offering an 

environmentally responsible and sustainable water 

delivery system. Numerous advantages have resulted 

from the incorporation of AI technology with SPVWPS, 

including reduced costs, enhanced dependability, 

streamlined operation, and improved efficiency 

(Mohammad and Mahjabeen, 2023). The MPPT method 

plays a vital role in improving the performance of 

SPVWPS by ensuring that the PV panels run at their 

maximum power output. The integration of AI 

technology with the MPPT system enhances the 

efficiency of SPVWPS (Venkat et al. 2024).  

Mahesh et al. (2022a) introduces a machine-

learning algorithm for MPPT in isolated PV systems. The 

algorithm uses a decision tree regression strategy to 

predict the maximum power available as well as the 

module voltage for specific irradiance and temperature. 

Simulations show that the suggested method increases 

efficiency by over 93.9% in a steady state. This indicates 

that machine learning techniques can be used to control 

nonlinear energy production in PV systems. Ahmed et al. 

(2022) presents a deep learning model using a back-

propagation neural network (BPNN) to maximize the 

power output of the solar grid under various load 

conditions. The model predicts the reference voltage and 

ensures a stable output voltage. The model is tested under 

different conditions, achieving maximum output power 

with 98% accuracy compared to existing methods. 

Meena et al. (2022) explore AI methods for scaling solar 

power systems, including standalone, grid-connected, 

and hybrid systems, to reduce environmental impact. It 

proposes a new model using multilayered perceptrons, 

which works with current PV modules. The performance 

is evaluated based on the convergence speed for single, 

two, and three diodes. Sharmin et al. (2022) present an 
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automated calibration approach for maximum power 

point tracking algorithms in solar PV systems. The 

method employs a simplified drawing of a PV system and 

an improved neural network (NN) method to monitor the 

maximum power point (MPP) of solar cell modules. The 

Bayesian regularisation approach is selected for training, 

and theoretical findings indicate that the enhanced neural 

network MPPT algorithm exhibits superior efficiency 

relative to the perturb and observe (P&O) method, 

minimizing misjudgment and power loss around the 

MPP. Khan et al. (2023) offer a neural network-based 

MPPT control approach for hybrid PV systems. The 

snake optimiser changes the multilayer perceptron neural 

network (MLPNN) weights and biases to make it faster 

and better at monitoring global maxima in real time. The 

PID controller that uses the snake optimizer, in 

conjunction with the snake optimizer-based neural 

network (SOANN), delivers stability, precision, and 

rapid MPPT under diverse environmental circumstances. 

The SOANN controller surpasses conventional 

controllers for efficiency, tracking time, stability, and 

fault detection capability in diverse practical conditions.  

Mahesh et al. (2022a) presents regression 

machine learning algorithms to extract maximum power 

from an isolated PV panel. Linear and non-linear 

algorithms predict available power and voltage, 

determining the duty cycle for a boost converter. The 

method achieves a steady state MPPT efficiency of over 

95.21%, with better accuracy under variable climatic 

conditions compared to existing methods. (Kirubakaran 

and Singaravelu, 2024) introduce an ML-based Support 

Vector Regression (SVR) MPPT controller, which they 

benchmark against AI-based methods. The SVR 

algorithm detects the maximum power and voltage, 

enabling an energy-efficient system. The proposed SVR 

algorithm offers better stability and operates at 96.60% 

of the mean efficiency, regardless of climatic changes. 

(Agarwal et al. 2022) presents a data-driven ML 

algorithm to track maximum power in PV panel systems. 

The algorithm uses data from the panel system connected 

to a boost converter, predicting PV voltage, current, 

temperature, irradiance, and PI. The system becomes 

more efficient (98%) over time. The system uses 

ensemble-based machine learning models to estimate 

power production from six solar PV systems, 

demonstrating strong performance and low computing 

costs. These models surpass the k-nearest neighbor 

method for real-time PV performance prediction (Raj et 

al., 2023).  

Ourici and Abderaouf, (2023) Compare the 

effectiveness of an ANN in monitoring MPP in PV 

systems with the traditional P&O technique. The NN was 

trained using data from a 100 Kw PV system, including 

performance measurements and environmental 

conditions. With a response time of 0.156 s, the NN 

method was faster, reaching a maximum power of 100 

kw. Omer and Shareef, (2023) introduce a machine-

learning gradient boost controller for PV systems using 

the CatBoost methodology. This controller outperforms 

conventional PI controllers in a variety of load, 

irradiance, and partial shade scenarios. Bacanin et al. 

(2023) present an AI-based energy predict-tuned deep 

learning framework for renewable energy sources (RES), 

which addresses hyperparameter tuning for long short-

term memory (LSTM) and gated recurrent unit (GRU) 

neural networks. Li et al. (2023) discusses the integration 

of AI, big data, and energy management systems, 

focussing on their role in forecasting energy use, 

facilitating energy trading, and transitioning to a lower 

carbon system. Habib et al. (2023) presents an SPVWPS 

designed to meet the growing global demand for water. 

The system considers water requirements, solar 

resources, tilt angle, losses, and performance ratio. The 

PV system, installed at a 15º tilt angle, is more efficient 

than diesel engines. The system pumps 75054 m3 of 

water, supplying 92.9% of the irrigation demand. The 

system has an annual average performance ratio of 

74.6%, and 70.0% of farmers are extremely satisfied with 

it. 

Pandian et al. (2024) suggest a real-time defect 

detection method for solar PV systems that uses a hybrid 

ANN and SVM. This method improves performance by 

combining the benefits of both algorithms to find faults 

faster and more accurately. Using ultra-short-term PV 

power forecasts, Mingzhang (Pan et al. 2020) optimized 

grid-connected solar power. Data pretreatment 

techniques build an SVM, leading to a 6.8% increase in 

the regression coefficient (R2). The hybrid model has an 

R2 of 0.997, enhancing forecast accuracy for peak power 

and night, thus improving real-time grid-connected 

generation capabilities. Der et al. (2024) proposed a 

method to enhance fault detection in solar power systems 

by analyzing common defect types in PV modules and 

using SVM techniques. They used data analysis to 

identify system errors and create an interface for real-

world monitoring. The system accurately identified eight 

main problems, including energy storage batteries, solar 

panel output circuits, dust buildup, inverters, controllers, 

and damage to the mounting rack structure. The approach 

also detects open-circuit and short-circuit defects in 

bypass diodes. The above study reviews the AI 

applications in renewable energy systems, focussing on 

modeling techniques for solar power forecasting, fault 

detection, and intelligent buildings. AI can also improve 

the design, modelling, optimisation, control, and 

efficiency of renewable energy systems. This work is 

focused on these research gaps. The novelties of this 

work are: 

1. The solar PV energy system is designed to meet

the daily water demand.

2. To use AI (PSO, fuzzy, ANN, and ML)

techniques to enhance and analyze MPPT

performance under various weather scenarios.
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3. To use AI approaches to control the motor pump

system speed and torque.

4. Use the ML (SVM) technique to anticipate and

compare the actual generation of PV electricity.

5. To compare the performance of ML (SVM)

approaches to that of fuzzy, PSO, and ANN

techniques.

Site Weather Forecast Assessment

Start

Calculate Solar Intensity on 

Horizontal and Tilted Surface

Daily Water Demand

Calculate Total Dynamic Head

Calculate Hydraulic Energy For Pump

Sizing of PV Array or Generator

Sizing of Inverter, Converter and 

Design AI Based MPPT

Water Demand Satisfy

End

 No

 Yes

Fig. 1: Flow chart of the design and sizing of SPIS 

2. DESIGN METHODOLOGY

The mathematical design methodology of the 

solar power irrigation system (SPIS) is illustrated in 

Figure 1. A 5-acre farm is being considered for this 

investigation. The farmhouse is situated at a latitude of 

24.34 N and a longitude of 77.43 E. The 5-acre farm 

accommodates a family of six members, consisting of 

three males and three females, as well as animals that 

require drinking water for both the family and the 

animals themselves. The farm also needs water every day 

for farming reasons. The daily water demand in the 

farmhouse is 30,000 liters. The depth of the well is 70 

meters.  

To calculate the sizing of the PV system as 

follows: 

Step 1: Assessment of site weather forecast 

using AI techniques. The yearly average solar radiation 

intensity is shown in Figure 1. 

Step 2: Determine the solar energy received on 

a horizontal surface. The horizontal surface is calculated 

by equation 1. 

 Hs =
86400 Gc

π
(1 + 0.33 cos (2π

n

365
)) (cosφcosδsinωs +

ωssinφsinδ) … (1)

Where Gc and n are the solar constant and No.

of days, respectively, ωs, φ, δ  are the sunset hour,

latitude, and declination angle. 

 Step 3: Calculate the daily water demand. The 

daily water demand is 30,000 liters/day. 

Step 4: Compute the total dynamic head (TDH). 

The TDH is (Raghuwanshi and Khare, 2018), 

TDH = Vertical head +
 Frictional losses (0.5%) = 73.5 meters … (2)

Step 5: Determine the daily hydraulic energy 

need. The hydraulic energy is (Raghuwanshi and Khare, 

2018), 

Ehy =
(ρ×v×g×TDH×10−3MJ)

3.6
= 6kWh      … (3)

Where, ρ, v and g are the density of water (1000 

kg/m3), gravity (9.81 m/s2) and volume of water (30,000 

litres/day) respectively. 

Step 6: Size of the PV capacity (kW) needed to 

power the pump's electric load (Raghuwanshi and Khare, 

2018). 

         Ppv =  
Ehy

GdηemfOf
 KW = 4.48kW ≈ 5kW     ... (4)

Where, Gd and ηe are the daily solar irradiation

on PV surface in kwh/m2 (6h/day) and subsystem 

efficiency (0.35) respectively.  mf and Of are the

mismatch (0.85) and operating (0.75) factors, 

respectively.  

Step 7: Calculate motor pump, inverter, and 

converter ratings. 

A 3 ph/3.7 kW submersible pump is used. The 

efficiency of solar inverter and converter are usually, 93-

96%. The inverter rating is (Raghuwanshi et al. 2023), 

Pinv =
3.7kW

0.95
= 3.89 ≈ 4kW … (5)

The DC-DC converter rating is (Raghuwanshi et 

al. 2023), 

Pcon =
4kW

0.93
= 4.30 ≈ 4.5kW         … (6)
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Fig. 2: AI-based solar PV water pumping system 

3. SYSTEM DESCRIPTION

The SPIS comprises a PV module, a DC-DC 

converter (buck-boost), a voltage source inverter (VSI), 

filters, and a motor pump and load demand. The system 

components are arranged in series as illustrated in Figure 

2. Two control mechanisms have been used to achieve

optimization. Control the MPPT first, and then use the 

vector control method to manage the speed of the motor 

pump to meet the daily water demand. 

3.1 PV panel 

A PV cell transforms solar energy into direct 

current electrical energy via the photoelectric effect. A 

PV array consists of parallel and series PV cells, with 

series and shunt resistances that affect cell efficiency. 

The PV generator power is as follows (Verma et 

al. 2024), 

pv = Prat ×
G𝑟𝑎𝑑

G𝑟𝑒𝑓
× [1 + k𝑐(T𝑎𝑚𝑏 + (0.0256 × S𝑟𝑎𝑑)) − T𝑟] … (7) 

Where, Prat and kc represent rated PV power

and constant (−3.7×10−3 (1/◦C)) respectively, 

Grad and Gref represent sun and reference irradiation

respectively, Tamb and Tr are the ambient and reference

temperature respectively. 

3.2 Buck-boost Converter 

PV voltage is increased by the DC-DC buck-

boost converter, which is driven by a PV panel and 

managed by PWM. It does this by utilizing the duty ratio 

of a metal oxide field effect transistor (MOSFET). An 

inductor is used in the circuit to boost current, and when 

the switch is off, stored energy is released. 

The output voltage is as follows, 

  Vo = −
D

1−D
Vin … (8)

The inductance and capacitance are as follows: 

L =
VoD

∆If
… (9)

C =
VoD

∆VcfR
… (10)

Where, Vin 𝑎𝑛𝑑 Vo  represent input and output

voltage respectively, D is duty cycle, ∆I 𝑎𝑛𝑑 ∆Vc

represent ripple current and voltage respectively, f and R 

represent switching frequency and output resistance 

(Abid et al. 2021). 

ηcon =
VoIo

VpvIpv
… (11)

 3.3 Inverter 

A solar pump inverter is a crucial component of 

off-grid solar systems, converting direct current from 

solar panels into alternating current for powering 

appliances like water pumps. It maintains a constant 

frequency, ensuring smooth operation during electrical 

outages. 

3.4 Motor-pump Set 

Solar submersible pumps utilize solar energy for 

water delivery, making them ideal for remote areas with 
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limited electricity, providing domestic, agricultural, and 

livestock water supply, irrigation, and borehole pumping. 

4. AI TECHNIQUES

Three AI approaches have been taken into 

consideration for solar irrigation system optimization. AI 

approaches such as fuzzy logic, PSO, ANN, and ML 

(SVM) are employed to optimize irrigation system 

performance.  

4.1 Fuzzy Logic Controller 

The FLC MPPT technique is used to optimize 

SPIS by continuously adjusting the system operating 

point to align with the MPP. The technique uses fuzzy 

logic principles to accommodate imprecision and 

uncertainty, resulting in robust and efficient control. The 

process involves fuzzification, which transforms 

quantitative inputs into fuzzy language variables, and the 

Fuzzy Rule Base, which consists of linguistic rules 

derived from these variables. The Inference Engine 

processes these fuzzy input variables, generating fuzzy 

output variables and defuzzifying them into numerical 

values. The control actions are then transmitted to the PV 

inverter, which adjusts the system operation to optimize 

power production. 

The primary variables incorporated into the 

FLC are the voltage error and its temporal variation. At 

each sample instant, two input variables, e(t) and ∆e(t), 

are computed as follows (Jayasankar et al. 2024), 

Error, 

e(n) =
𝑝𝑣(t)−𝑝𝑣(t−1)

𝑣𝑣(t)−𝑣𝑣(t−1)
… (12)

Change of error, 

    ∆e(t) = e(𝑡) − e(t − 1) … (13)

Where,𝑣𝑣 and 𝑝𝑣   are the PV voltage and power

respectively. 

The duty cycle of FLC is as follows (Pandey et 

al. 2024), 

∆D =
∑ 𝜇𝑤

𝑁
𝑖=1 𝑑𝐷𝑖

∑ 𝜇𝑤
𝑁
𝑖=1

… (14)

Where,  𝑑𝐷𝑖  𝑎𝑛𝑑 𝜇𝑤 are the membership

function and weight factor of duty cycle respectively. 

The following duty cycle value is utilized to 

create the converter control signal: 

D(t) = D(t − 1) + ∆D(t) … (15)

4.2 Particle Swarm Optimization 

PSO, as a controller, can optimize power 

generation in solar PV systems. Regular adjustments 

ensure accurate control, with the PSO controller creating 

a population of particles for maximum power generation. 

The steps of the PSO algorithm are as follows, 

Step 1: Initialization: initialization population of 

particles. 

Step 2: Velocity and Position Updating: 

Particles adapt their velocities and positions based on 

MPP, ideal position, and adjacent particle positions, with 

factors like inertia, cognition, and social relationships 

influencing acceleration coefficients. 

Position vectors pv(t) and velocity vectors

vv(t) are used to classify each particle.

The velocity constraint is as follows (Sinha et 

al. 2024), 

  vv(t + 1) = δvv + k1 × ran × (pbest(t) −

pv(t)) + k2 × ran × (gbest(t) − pv(t))  … (16)

Where, δ and ran are the inertia weight and 

random numbers respectively, k1and k2 are the

cognition and social mechanisms respectively,  

 Step 3: Fitness Evaluation: Each particle's 

power output, representing the operational point, 

undergoes an assessment. The fitness function 

incorporates the positional data of the particle to 

determine the electrical power produced by the system. 

 Step 4:  Updated position: The particles 
iteratively update both the global best position, which 
signifies the MPP output among all particles in the 
population, and their personal best positions, which 
denote the position with the highest power output they 
have encountered thus far. 

The location updates of the particles by using 

the following equation (Gupta and Bhargava, 2024), 

  pv(t + 1) = pv(t) + vv(t + 1) … (17)

where, pv(t) and pv(t + 1) are the position and

updated vector 

 Step 5: Termination Criteria: The algorithm 

terminates its execution either when it reaches a specific 

number of iterations or when there is a slight marginal 

gain in power output. 

Step 6: Control Implementation: The global best 

position, which represents the powerpoint with the  
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highest magnitude, determines the control modifications 

applied to the operational state of the PV system. 

4.3 Artificial Neural Network 

The ANN MPPT controller optimizes the power 

generation of a PV system by continuously adjusting the 

operating point. The ANN learns patterns and 

correlations from historical data, processes inputs like 

solar radiation, temperature, and power output, computes 

the maximum power point, implements control 

measures, and continuously monitors the optimal power 

point to maximize power production efficiency and 

performance. The goal is to maximize the PV system 

capabilities in dynamic operating conditions. The ANN 

topology of the PV system is shown in Figure 3. 

The following is the activation signal of the nth 

hidden layer neurone (Liu et al. 2023), 

as = ∑ wsi
n
i=1 Vpv_iIpv_i + bi        … (18)

Where, wsi and bi are the input weight and bias

vector respectively, Vpv_i and Ipv_i are the PV voltage and

current input respectively. 

The decision signal is calculated using the 

sigmoid function as follows (Liu et al. 2023; Bandhu et 

al. 2024), 

Sf =
1

1+e−as
… (19)
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Fig. 3: ANN for PV system 

Output can be calculated using the following 

equation (Bandhu et al. 2024; Shah et al. 2024) 

yvin = ∑ xsj
n
j=1 Sf + bt                 … (20) 

Where, 𝑥𝑠𝑗  𝑎𝑛𝑑 𝑏𝑡 are the output weight and

bias vector respectively. 

The study uses the normalized mean squared 

error as the cost function to train neural networks, aiming 

to minimize the cost function and improve forecast 

accuracy (Bandhu et al. 2024; Khasawneh et al. 2024). 

RMSE =
1

Tm
√

1

N
∑ (Tv − Pv)2N

i=1   … (21)

Where Tv and Pv represent true and forecast

values respectively, Tm and N are the mean of true value

and number of data samples respectively. 

4.4 Machine Learning Technique (Support 
Vector Machine) 

SVM is used for classification tasks; however, 

it can also be modified for regression applications. It 

operates by determining the ideal hyperplane in a high-

dimensional space to differentiate data points of various 

kinds. A flat affine subspace of dimension (n-1) is 

characterized as a hyperplane in an n-dimensional space. 

Figure 4 illustrates a hyperplane, which is a line in two 

dimensions and a plane in three. The data points closest 

to the hyperplane are termed support vectors, which are 

essential for determining the hyperplane's position and 

orientation. The SVM algorithm concentrates on these 

points to maximize the margin between the classes. The 

distance between the nearest data point of each class and 

the hyperplane is indicated by the margin. SVM enhances 

the model's capacity for generalization by increasing this 

margin. 

Let us assume, training data set with N samples 

are denoted as (𝑥𝑗 , 𝑦𝑗), j=1,2,3…..N. Where, 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑗

are represent the input and output respectively. 

The linear hyperplane function is as follows 

(Mahesh et al. 2022a, Hafdaoui et al. 2022), 

𝑓(𝑥) = 𝛽𝑥 + 𝑐 … (22)

where 𝛽 𝑎𝑛𝑑 𝑥 are hyperplane inclination in 

space and a point on the plane, and c is the bias of the 

hyperplane from the origin. 

The objective function of SVML is as follows 

(Pan et al. 2020; Deo et al. 2016), 

          𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
||𝛽||2 + 𝑐 ∑ (𝜉𝑗 − 𝜉𝑗

∗)𝑁
𝑗=1     … (23)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑗 − (𝛽𝑥𝑗 + 𝑐) ≤ 𝜖 + 𝜉𝑗

(𝛽𝑥𝑗 + 𝑐) − 𝑦𝑗 ≤ 𝜖 + 𝜉𝑗
∗ … (24)

kernel function for non-linear training data is as 

follows, 
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          𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛽𝐾(𝑥𝑗,𝑥) + 𝑐𝑁
𝑗=1 )         … (25)

Where, 𝐾 𝑎𝑛𝑑 𝑥𝑗  are the kernel function and

support vectors respectively. 

Y

X

c

β

+ε

-ε

ε
 ζj

ζj*

Support Vectors

Optimum hyperplane

βx+c

Fig. 4: SVM on two-dimensional space (Deo et al. 2016) 

5. RESULTS AND ANALYSIS

The data for PV panels are tabulated in Table 1. 

Modeling of the PV module using MATLAB 

environment under different weather conditions is shown 

in Figure 5. The V-I and P-V characteristics of a solar 

module at 25 °C and various irradiation (300W/m2-

1000W/m2) are shown in Figure 5a. For 300W/m2, the 

current reaches a value of around 2.85 Amp and stays 

constant for voltages between 0V and 33V. However, it 

rapidly drops with additional voltage increases and 

reaches zero at 36.8V. For 700W/m2, the current reaches 

a value of around 6.55 Amp and remains constant for 

voltages between 0V and 33.6V. However, it rapidly 

drops with additional voltage increases and reaches zero 

at 38.7V. The current of the PV cell reaches a value of 

around 9.3 amps at 1000W/m2 and is constant for 

voltages between 0V and 39.9V. The characteristics 

show that as solar irradiation increases, the module 

voltage and current will increase.  

The power output increases gradually from 0 to 

about 87 W at a solar irradiation level of 300 W/m², and 

the voltage increases gradually from 0 V to 32.6 V. 

However, beyond this point, the power quickly decreases 

and hits zero at 37.8 V. When the solar irradiation level 

is 700 W/m², and the output power gradually increases 

from 0 to 208 W at 33.55 V. A constant pattern in power 

production is seen at 1000 W/m² of solar insolation. As 

the voltage rises from 0 V to an ideal level, it begins at 0 

W and steadily increases to about 300 W. However, 

beyond this, the power output quickly drops and hits 0 W 

at 39.9 V. These features imply that the voltage and 

power output of the module grow in tandem with an 

increase in solar insolation.  

Table 1. Technical specifications of PV panel 

Parameters Specifications 

Model Number BBS24F300 

Module Power 300W 

Module Max. Voltage 33.90V 

Maximum Current 8.85A 

Open Circuit Voltage 39.90V 

Short Circuit Current 9.38A 

Module Sizes 164.5 cm x 99 cm x 3 cm 

Efficiency 16.70% 

Life Span 25 Years 

Fig. 5: I-V and P-V characteristics of PV array (a) at different 
solar irradiations and (b) at different temperature  

Figures 5b illustrate how the I-V and PV 

properties of the temperature affect the solar module. 

When the temperature rises, the current increases 

slightly, but the PV cell voltage of the PV cell clearly 

decreases at constant insolation levels (1000W/m2). As 

demonstrated in Fig. 5a, a rise in temperature decreases 

the bandgap, increasing the rate of photogeneration. As a 

result, the cell current increases and the open-circuit 

(a) 

(b) 
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voltage falls. The cell voltage drops by about 2 volts and 

the current only increases by 0.3 A from 25 to 35 ºC. It 

has been shown that while there is a slight rise in current, 

there is a noticeable fall in voltage. It is more noticeable 

when the cell voltage drops than when the short-circuit 

current rises.  

Fig. 6: PV generator current, voltage and power output at different solar irradiations 

(a) 
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(c) 
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Fig. 7: PV generator current, voltage and power output at different temperatures (a) Fuzzy (b) PSO (c) ANN and (d) ML 

Figure 6 shows the parameters of the solar PV 

generator, such as voltage (Vpv), current (Ipv), and power

(Ppv), under varying solar irradiation conditions ranging

from 400 to 1000W/m2. At a solar irradiation of 400 

W/m2, the values of voltage, current, and power are: 

234.3V, 3.29A, and 770 watts for the fuzzy approach; 

235.7V, 3.3A, and 777.8 watts for the PSO method; 

239.5V, 3.36A, and 804.7 watts for the ANN method; 

and 243.5V, 3.37A, and 820.5 watts for the ML method. 

Similarly, the values of voltage, current, and power at 

irradiation of 1000 W/m2 are 577.2V, 8.14A, and 4698 

watts for the fuzzy approach, 580V, 8.18A, and 4744 

watts for the PSO method, 589V, 8.3A, and 4888 watts 

for the ANN method, and 598V, 8.35A, and 4993 watts 

for the ML method. The data indicate that solar 

irradiation increases, and voltage, current, and power are 

also increasing. The overall efficiency of the PV solar 

power system increases with increasing irradiation. 

Results of the solar PV generator Vpv, Ipv and

Ppv at different temperatures (25°C-55°C) are displayed

in Figure 7, with a constant insolation of 1000W/m2. 

Power and voltage decrease with increasing temperature. 

At a temperature of 25°C, the values of voltage, current, 

and power are: 577.2V, 8.11A, and 4681 watts for the 

fuzzy approach; 581V, 8.17A, and 4747 watts for the 

PSO method; 590V, 8.27A, and 4879 watts for the ANN 

method; and 600V, 8.33A, and 4998 watts for the ML 

method. Similarly, the values of voltage, current, and 

power at a temperature of 55°C are 574V, 8.14A, and 

4672 watts for the fuzzy approach, 578V, 8.2A, and 4739 

watts for the PSO method, 587V, 8.31A, and 4878 watts 

for the ANN method, and 596V, 8.36A, and 4982 watts 

for the ML method. The data indicate that temperature 

and current are increasing, but voltage and power are 

decreasing. As the short-circuit current increases, there is 

a more pronounced drop in cell voltage. The overall 

efficiency of the PV solar power system degrades with 

increasing temperature. In different weather conditions, 

ML technique-based systems perform better than the 

other techniques.  

(d) 
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Fig. 8: Speed and torque output at various speeds with constant torque 

Figure 8 shows the performance of the 

submersible motor pump speed at various speeds at 

constant load torque. At the start, the overshoot of ANN 

is high compared to ML. The settling time of ML is 

minimal compared to others. After 1 sec, the speed varies 

from 200 to 250 rad/sec; the conversion is smooth in ML 

compared to others. The starting torque overshoot in 

fuzzy is high. The settling time in PSO is high. The ML 

settlement time is minimal compared to others.  

Table 2. Compare different AI techniques based on speed, 
overshoot and settling time 

Techniques 

Reference speed in 

rad/sec. 
Overshoot 

(%) 

Settling 

time 

(Sec.) 200 250 300 

Fuzzy 196.5 244.8 292.3 -3 0.6 

PSO 197.6 245.7 294.6 -2 0.55 

ANN 198.5 248.6 298.4 2 0.5 

ML 199.9 249.9 300 0.95 0.3 

Table 2 shows the performance of various AI 

control methods at varying speeds, overshoot, and 

settling times. At reference speed 200, the average speed 

of Fuzzy, PSO, ANN and ML are 196.5 rad/sec, 197.6 

rad/sec, 198.5 rad/sec and 199.9 rad/sec respectively. At 

reference speed 300, the average speed of Fuzzy, PSO, 

ANN and ML are 292.3 rad/sec, 294.6 rad/sec, 298.4 

rad/sec and 300 rad/sec respectively. The results of the 

ML technique are consistently close to reference speed 

compared to other methods. Fuzzy techniques report an 

overshoot of -3% and a settling time of 0.6 seconds, PSO 

strategies report an overshoot of -2% and a settling time 

of 0.55 seconds, ANN report an overshoot of -2% and a 

settling time of 0.5 seconds, while ML approaches report 

an overshoot of 0.95% and a settling time of 0.3 seconds. 

In terms of overshooting and settling time, ML gives 

better performance. 

Fig. 9: Comparison of system efficiency at different AI 
techniques 

Fig. 9 illustrates that PSO-based system 

efficiency is poor in starting samples. After 20 samples, 

it reaches 90% and constant 95% after 40 samples. 

Fuzzy-based system efficiency is good compared to PSO 

and less than ANN and ML. The performance of ANN 

techniques is better than that of PSO and fuzzy. The ML-

based system is constantly maintained and has reached 
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99.6%. It is clear from the graph; ML technique 

performance is better than the others. 

Fig. 10. SV-ML optimization results (a) Comparison of 
generated PV power at different solar irradiation, (b) Annual 
actual and predicted PV power generation at sunshine hours 
and (c) Comparison of actual PV power and predicted PV 
power 

Figure 10a shows the generation of ML (SVM) 

based PV power at different levels of sun irradiation. 

Increased irradiation results in an increase in PV power. 

Solar irradiation of 1000W/m2 allowed the PV module to 

reach its maximum capacity. The use of ML algorithms 

yields results that are more accurate when applied to real-

time data. 

Figure 10b illustrates the annual PV power 

generated during sunlight hours. ML (SVM) is utilized to 

forecast PV power. The generation of PV power is 

evaluated from 10:00 AM to 3:00 PM. The results 

indicate that the ML algorithms accurately estimate the 

generated power. Figure 10c illustrates the comparison 

between real PV power and predicted PV output. The 

expected power is closely aligned with the actual power. 

6. CONCLUSION

A 5-kW PV solar-powered irrigation system 

was constructed according to daily water requirements. 

PV system performance was evaluated under varying sun 

irradiance and temperature conditions. PSO, ANN, fuzzy 

logic, and ML techniques have been employed for 

optimization. This study also examined the efficiency 

and prediction of PV-generated power. The case study 

load demand is 30,000 litres/day. The components of the 

PV system have been determined: the inverter is rated at 

4 kW, the DC-DC converter at 4.5 kW, and the PV 

capacity at 5 kW. The PV system is evaluated under 

different solar irradiance conditions (300 W/m2 to 1000 

W/m²) and temperature conditions (25°C to 55°C). The 

AI techniques (fuzzy logic, PSO, ANN, and ML) have 

been developed and implemented in MPPT as a control 

mechanism. The performance of the MPPT-based system 

has been evaluated in different weather situations. The 

values of voltage, current, and power at irradiation of 

1000 W//m2 are 577.2V, 8.14A, and 4698 watts for the 

fuzzy approach, 580V, 8.18A, and 4744 watts for the 

PSO method, 589V, 8.3A, and 4888 watts for the ANN 

method, and 598V, 8.35A, and 4993 watts for the ML 

method. At a temperature of 25°C, the values of voltage, 

current, and power are: 577.2V, 8.11A, and 4681 watts 

for the fuzzy approach; 581V, 8.17A, and 4747 watts for 

the PSO method; 590V, 8.27A, and 4879 watts for the 

ANN method; and 600V, 8.33A, and 4998 watts for the 

ML method. Under varying weather conditions, systems 

based on ML technique exhibit superior performance 

compared to PSO, fuzzy and ANN methods. 

To optimize the analysis of motor pump 

performance at varying speeds (200-300 rad/sec). Table 

2 illustrates the performance of AI control methods at 

different speeds, overshoots, and settling times. At a 

reference speed of 300, the average speeds of Fuzzy, 

PSO, ANN, and ML are 292.3 rad/sec, 294.6 rad/sec, 

298.4 rad/sec, and 300 rad/sec, respectively. The ML 

technique consistently aligns with the reference speed. 

The ML technique also reduces the overshoot and the 

settling time. The efficiencies are as follows: PSO (95%), 

fuzzy logic (96%), ANN (98%), and ML (99.6%).  The 

comparative results indicate that the ML (SVM) 

technique is superior and more efficient than others. ML 

(a) 

 (b) 

(c) 
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(SVM) also predicts the generation of electricity from PV 

power. The findings demonstrate that the ML (SVM) 

algorithms effectively predict the generated power. The 

research work is to improve quality of life and promote 

an environmentally sustainable atmosphere in remote 

areas by implementing a more stable, efficient, and 

effective solar powered irrigation system utilising AI 

techniques.  
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