Rheological and Mechanical Properties of Aluminum-ceramic Inks with Nanomaterials Using the Taguchi Method
J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 124-136
Abstract
The use of aluminum ceramic nanoparticles allows for the three-dimensional printing of a wide variety of biomedical goods, such as dental instruments, sutures, blades, and dental tools. Cutting instruments, medicines, bioengineering, and abrasives all use ceramics and other non-metallic materials as heat sources. These are the primary applications of ceramic powder, and they represent a major paradigm change in biological applications generally and dental and skeletal applications in particular. A DIW machine combines ceramic and aluminum to create artificial teeth. The liquid material enables us to construct the teeth in layers. It also determines the necessities of life. Ceramics' resistance to high temperatures and chemicals is an important quality. Ceramics are excellent medical application materials because of their non-corrective nature, low cost, and exceptional thermal, electrical, and optical qualities. Furthermore, they manufacture ultra-thin, light-permeable glass, which enables the detection of internal flaws in materials. the ceramic lenses instead of glass ones. In place of restorative materials made of metal, ceramics are a wonderful choice. Ceramics have a plethora of remarkable properties, including chemical resistance, wear resistance, biocompatibility, and beauty. Despite the numerous benefits of all-ceramic restorations, their limited clinical lifespan and vulnerability to fractures have hindered their widespread use. The recent development of new, harder materials has led to an increasing number of doctors prescribing all-ceramic restorative systems. This is because it consistently delivers first-rate outcomes. One technique that sticks out is the Taguchi method.
Full Text
Reference
An, T., Hwang, K. T., Kim, J. H. and Kim, J., Extrusion-based 3D direct ink writing of NiZn-ferrite structures with viscoelastic ceramic suspension, Ceram. Int., 46(5), 6469–6476(2020).
https://doi.org/10.1016/j.ceramint.2019.11.127
Bindslev, D. A., Dental amalgam-environment, aspects, Adv. Dent. Res., 6, 125–130(1992).
https://doi.org/10.1177/08959374920060010501
Chen, T., Sun, A., Chu, C., Wu, H., Wang, J., Wang, J., Li, Z., Guo, J., and Xu, G., Rheological behavior of titania ink and mechanical properties of titania ceramic structures by 3D direct ink writing using high solid loading titania ceramic ink, J. Alloys Compd., 783, 321–328(2019a).
https://doi.org/10.1016/j.jallcom.2018.12.334
Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Li, Y., Wang, P. and He, Y., 3D printing of ceramics: A review, J. Eur. Ceram. Soc., 39(4), 661–687(2019b).
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
Chen, Z., Sun, X., Shang, Y., Xiong, K., Xu, Z., Guo, R., Cai, S. and Zheng, C., Dense ceramics with complex shape fabricated by 3D printing: A review, J. Adv. Ceram., 10, 195–218(2021).
https://doi.org/10.1007/s40145-020-0444-z
Cramer, C. L., Ionescu, E., Graczyk, Z. M., Nelson, A. T., Katoh, Y., Haslam, J. J., Wondraczek, L., Aguirre, T. G., LeBlanc, S., Wang, H., Mansour, M., Ed, T., Ralf, R., Paolo, C. and Majid, M. J., Additive manufacturing of ceramic materials for energy applications: Road map and opportunities, J. Eur. Ceram. Soc., 42(7),3049–3088(2022).
https://doi.org/10.1016/j.jeurceramsoc.2022.01.058
Del, M. B. L. and Ginebra, M. P., Rheological characterization of ceramic inks for 3D direct ink writing: A review, J. Eur. Ceram. Soc., 41(16), 18–33(2021).
https://doi.org/10.1016/j.jeurceramsoc.2021.08.031
Diaz, C., A., Trice, R. W. and Youngblood, J. P., Stabilization of highly-loaded boron carbide aqueous suspensions, Ceram. Int., 43(12), 8572–8578(2017).
https://doi.org/10.1016/j.ceramint.2017.03.111
Feilden, E., Ferraro, C., Zhang, Q., Garcia-Tuñón, E., D’Elia, E., Giuliani, F., Vandeperre, L. and Saiz, E., 3D printing bioinspired ceramic composites, Sci. Rep., 7(1), 13759(2017).
https://doi.org/10.1038/s41598-017-14236-9
Guo, Z. and Zhou, C., Recent advances in ink-based additive manufacturing for porous structures, Addit. Manuf., 48, 102405(2021).
https://doi.org/10.1016/j.addma.2021.102405
Hall, S. E., Regis, J. E., Renteria, A., Chavez, L. A., Delfin, L., Vargas, S., Haberman, M. R., Espalin, D., Wicker, R. and Lin, Y., Paste extrusion 3D printing and characterization of lead zirconate titanate piezoelectric ceramics, Ceram. Int., 47(15), 22042–22048(2021).
https://doi.org/10.1016/j.ceramint.2021.04.224
Hao, J., Li, W., Zhai, J. and Chen, H., Progress in high-strain perovskite piezoelectric ceramics, Mater. Sci. Eng. R: Rep., 135, 1–57(2019).
https://doi.org/10.1016/j.mser.2018.08.001
Hao, X., Zhai, J., Kong, L. B. and Xu, Z., A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Prog. Mater. Sci., 63, 1–57(2014).
https://doi.org/10.1016/j.pmatsci.2014.01.002
Hossain, S. S., Jang, S., Park, S. and Bae, C. J., Understanding ink design and printing dynamics of extrusion-based 3D printing: Defect-free dense piezoelectric ceramics, Journal of Manufacturing Processes, 92, 1–11(2023).
https://doi.org/10.1016/j.jmapro.2023.02.018
Kemp, J. W., Diaz, A. A., Malek, E. C., Croom, B. P., Apostolov, Z. D., Kalidindi, S. R., Compton, B. G. and Rueschhoff, L. M., Direct ink writing of ZrB2-SiC chopped fiber ceramic composites, Addit. Manuf., 44, 102049(2021).
https://doi.org/10.1016/j.addma.2021.102049
Lakhdar, Y., Tuck, C., Binner, J., Terry, A. and Goodridge, R., Additive manufacturing of advanced ceramic materials, Prog. Mater. Sci., 116, 100736(2021a).
https://doi.org/10.1016/j.pmatsci.2020.100736
Lakhdar, Y., Tuck, C., Terry, A., Spadaccini, C., and Goodridge, R., Direct ink writing of boron carbide monoliths, J. Eur. Ceram. Soc., 41(16), 76–92(2021b).
https://doi.org/10.1016/j.jeurceramsoc.2021.08.023
Lewis, J. A., Direct ink writing of 3D functional materials, Adv. Func. Mater., 16(17), 2193–2204(2006).
https://doi.org/10.1002/adfm.200600434
Li, Y. W., Zhou, X. L., Miao, H. C., Cai, H. R. and Li, F. X., Mechanism of crystal-symmetry dependent deformation in ferroelectric ceramics: Experiments versus model, J. Appl. Phy., 113(21), 214111(2013).
https://doi.org/10.1063/1.4809979
Lin, H., Qintao, S., Ming, M., Renquan, J., Huijun, G., Huan, Q., Wang, X. and Huiping, T., 3D Printing of Porous Ceramics for Enhanced Thermal Insulation Properties, Adv. Sci., 12(7), 2412554 (2025).
https://doi.org/10.1002/advs.202412554
M’barki, A., Bocquet, L. and Stevenson, A., Linking rheology and printability for dense and strong ceramics by direct ink writing, Sci Rep, 7(1), 6017(2017).
https://doi.org/10.1038/s41598-017-06115-0
Maiwa, H., Kimura, O., Shoji, K. and Ochiai, H., Low-temperature sintering of PZT ceramics without additives via an ordinary ceramic route, J. Eur. Ceram. Soc., 25(12), 2383–2385(2005).
https://doi.org/10.1016/j.jeurceramsoc.2005.03.066
Mori, T., Hori, Y., Fei, H., Inamine, I., Asai, K., Kiguchi, T. and Tsubaki, J., Experimental study about the agglomeration behavior in slurry prepared by adding excess polyelectrolyte dispersant, Adv. Powder Technol., 23(5), 661–666(2012).
https://doi.org/10.1016/j.apt.2011.08.004
Muniz, N. O., Vechietti, F. A. and Santos, L. A., Effect of variation of dispersant and fluid in the rapid prototyping of alumina, Key Eng. Mater., 631, 275–279(2014).
https://doi.org/10.4028/www.scientific.net/KEM.631.275
Nan, B., Olhero, S., Pinho, R., Vilarinho, P. M., Button, T. W. and Ferreira, J. M. F., Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0. 15Zr0. 1Ti0. 9O3, J. Am. Ceram. Soc., 102(6), 3191–3203(2018).
https://doi.org/10.1111/jace.16220
Papitha, R., Suresh, M. B., Rao, Y. S., Saha, B. P., Das, D. and Johnson, R., Pressure slip casting and cold isostatic pressing of aluminum titanate green ceramics: A comparative evaluation, Process. Appli. Ceram., 7(4), 159–166(2013).
https://doi.org/10.2298/PAC1304159P
Popov, V., Fleisher, A., Muller-Kamskii, G., Avraham, S., Shishkin, A., Katz-Demyanetz, A., Travitzky, N., Yacobi, Y. and Goel, S., Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting, Sci. Rep., 11(1), 2438(2021).
https://doi.org/10.1038/s41598-021-81861-w
Rocha, V. G., Saiz, E., Tirichenko, I. S. and Garc’ia-Tuñón, E., Direct ink writing advances in multi-material structures for a sustainable future, J. Mater. Chem. A, 8(31), 15646–15657(2020).
https://doi.org/10.1039/D5TA90047F
Rueschhoff, L., Costakis, W., Michie, M., Youngblood, J. and Trice, R., Additive manufacturing of dense ceramic parts via direct ink writing of aqueous alumina suspensions, Int. J. Appli. Ceram. Technol., 13(5), 821–830(2016).
https://doi.org/10.1111/ijac.12557
Sweeney, M., Campbell, L. L., Hanson, J., Pantoya, M. L. and Christopher, G. F., Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing, J. Mater. Sci., 52, 13040–13053(2017).
https://doi.org/10.1007/s10853-017-1404-z
Thakur, T., Maria, C., Dmitrii K. and Gurdial, B., Advancements in DLP 3D Printing: High Strength Alumina Toughened Zirconia Ceramics for Biomedical Applications, Open Ceramics, 18, 100601 (2024).
https://doi.org/10.1016/j.oceram.2024.100601
Thompson, J. Y., Stoner, B. R. and Piascik, J. R., Ceramics for restorative dentistry: critical aspects for fracture and fatigue resistance, Mater. Sci. Eng. C, 27(3), 565–569(2007).
https://doi.org/10.1016/j.msec.2006.05.034
Walton, R. L., Fanton, M. A., Meyer Jr, R. J. and Messing, G. L., Dispersion and rheology for direct writing lead-based piezoelectric ceramic pastes with anisotropic template particles, J. Am. Ceram. Soc., 103(11), 6157–6168(2020).
https://doi.org/10.1111/jace.17350
Wätjen, A. M., Gingter, P., Kramer, M. and Telle, R., Novel prospects and possibilities in additive manufacturing of ceramics by means of direct inkjet printing, Adv. Mech. Eng., 6, 141346(2014).
https://doi.org/10.1155/2014/141346
Zhang, X.; Zhang, Q., Meng, X., Ye, Y., Feng, D., Xue, J., Wang, H., Huang, H., Wang, M. and Wang, J., Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations, Polym., 13(17), 2975 (2021).