Open Access

Enhancing the Surface Quality and Tool Life Using Nano MQL-assisted Machining Characteristics of Aluminium Composite

M. Vivekanandhan, Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur, TN, India S. Gowtham, Department of Mechanical Engineering, Government College of Engineering, Bodinayakanur, TN, India V. Senthil, senthilgcebn@gmail.com
Department of Mechanical Engineering, Government College of Engineering, Bodinayakanur, TN, India
C. Dhanesh Department of Mechanical Engineering, S.A. Engineering College, Chennai, TN, India


J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 113-123

https://doi.org/10.13074/jent.2025.03.2441060

PDF


Abstract

This study investigates the effect of graphene nanoplatelets (GNPs) dispersed minimum quantity lubrication (MQL) for improving the turning characteristics of aluminium composite comprising of LM25 as matrix and 10 wt.% of titanium carbide (TiC) as reinforcement fabricated via stir casting technique. Turning studies are performed on the turning center attached with MQL setup where different weight proportions of GNPs (1, 3, and 5 wt.%) are mixed with canola oil and supplied at the cutting zone. Experiments are designed by Taguchi’s method, an appropriate L9 orthogonal array is considered. The surface roughness (SR), and flank wear outcomes are measured and analyzed using grey relational analysis (GRA). Observation shows, the MQL consisting of 3 wt.% of GNPs provided lower FW and SR as it lowers the interface temperature at cutting zone and easy dispersal of chips. Increases in FW and SR are mostly attributable to changes in the feed rate.

Full Text

Reference


Abellán, N. J. V., Vila Pastor, C. and Siller, H.R., A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability, Sustainability, 16(5), 1917 (2024).

https://doi.org/10.3390/su16051917

Ali, S. H., Yao, Y., Wu, B., Zhao, B., Ding, W., Jamil, M., Khan, A., Baig, A., Liu, Q. and Xu, D., Recent developments in MQL machining of aeronautical materials: A comparative review, Chin. J. Aeronaut., 38(1), 102918 (2025).

https://doi.org/10.1016/j.cja.2024.01.018

Altaf, S. F., Parray, M. A., Khan, M. J., Wani, M. F. and Bhat, F. A., Machining with Minimum Quantity Lubrication and Nano-Fluid MQL: A Review, Tribol. Online, 19(3), 209–217 (2024).

https://doi.org/10.2474/trol.19.209

Anand, A., Agarwal, M. and Aggrawal, D., Multiple Criteria Decision-Making Methods: Applications for Managerial Discretion, De Gruyter, Vol 4, (2022).

https://doi.org/10.1515/9783110743630

Atkins, A., The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals, Butterworth-Heinemann/Elsevier, (2009).

https://doi.org/10.1016/C2009-0-17178-7

Banavathu, K. R., Chebattina, K. R. R., Srinivas, V., Moorthy, C. V. K. N. S. N. and Pullagura, G., Physico-chemical and tribological properties of commercial oil – bio-lubricant mixtures dispersed with graphene nanoplatelets, RSC Adv., 13(26), 17575–17586 (2023).

https://doi.org/10.1039/D3RA02689B

Bhushan, R. K., Impact of SiC particle size and weight % on tool life while machining of AA7075/ SiC composite, J. Alloys Metall. Syst., 3, 100016 (2023).

https://doi.org/10.1016/j.jalmes.2023.100016

Boothroyd, G. and Knight, W. A., Fundamentals of machining and machine tools, 2nd ed. Marcel Dekker, New York, (1989).

Dhulipalla, A., Uday, K. B., Akhil, V., Zhang, J., Lu, Z., Park, H. Y., Jung, Y. G. and Zhang, J., Synthesis and machining characteristics of novel TiC ceramic and MoS2 soft particulate reinforced aluminium alloy 7075 matrix composites, Manuf. Lett., 24, 82–86 (2020).

https://doi.org/10.1016/j.mfglet.2020.04.001

Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M. and Chandrashekarappa, M. P. G., Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy, Micromachines, 14(8), 1590 (2023).

https://doi.org/10.3390/mi14081590

Govindan, K. and Raghuvaran, J. G., Mechanical Properties and Metallurgical Characterization of LM25/ZrO2 Composites Fabricated by Stir Casting Method, Matér. Rio Jan., 24(3), e12439 (2019).

https://doi.org/10.1590/s1517-707620190003.0753

Gunasekaran, J., Sevvel, P., John, S. I. and Vasanthe Roy, J., Multi objective optimization of parameters during FSW of AZ80A - AZ31B Mg alloys using grey relational analysis, J. Mech. Sci. Technol., 38(9), 4971–4982 (2024).

https://doi.org/10.1007/s12206-024-0832-3

Gupta, K. and Davim, J. P., High speed machining. Elsevier academic press, London, Academic Press, (2020).

https://doi.org/10.1016/C2017-0-02542-9

Harrer, M., Cuijpers, P., Furukawa, T. A. and Ebert, D. D., Doing Meta-Analysis with R: A Hands-On Guide, 1st edn. Chapman and Hall/CRC, Boca Raton, (2021).

https://doi.org/10.1201/9781003107347

Hisam, M. W., Dar, A. A., Elrasheed, M. O., Khan, M. S., Gera, R. and Azad, I., The Versatility of the Taguchi Method: Optimizing Experiments Across Diverse Disciplines, J. Stat. Theory Appl., 23(4), 365–389 (2024).

https://doi.org/10.1007/s44199-024-00093-9

Huo, D., Chen, W. and Zheng, L., Vibration Assisted Machining: Theory, Modelling and Applications, 1st Ed., Wiley, (2021).

https://doi.org/10.1002/9781119506348

Ishfaq, K., Maqsood, M. A., Anwar, S., Harris, M., Alfaify, A. and Zia, A. W., EDM of Ti6Al4V under nano-graphene mixed dielectric: a detailed roughness analysis, Int. J. Adv. Manuf. Technol., 120(11–12), 7375–7388 (2022).

https://doi.org/10.1007/s00170-022-09207-y

Jiang, M., Zheng, J. W., Xiao, H. Y., Liu, Z. J. and Zu, X. T., A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC, Sci. Rep., 7(1), 9344 (2017).

https://doi.org/10.1038/s41598-017-09562-x

Raja, K., Senthil, K. M. S., Karthik. A. and Sampath, K. L., Enhancing Drilling Performance in Natural Fiber-Reinforced Biocomposites Using Taguchi Method for Sustainable Manufacturing, J. Environ. Nanotechnol., 13(3), 246–252 (2024).

https://doi.org/10.13074/jent.2024.09.243866

Kamis, K. Z. and Acar, Z., Taguchi-Based Grey Relational Analysis on Multiple Damping Characteristics of a Hydraulic Engine Mount, Arab J. Sci. Eng., (2024).

https://doi.org/10.1007/s13369-024-09510-8

Kayaroganam, P., Krishnan, V., Natarajan, E., Natarajan, S. and Muthusamy, K., Drilling Parameters Analysis on In-Situ Al/B4C/Mica Hybrid Composite and an Integrated Optimization Approach Using Fuzzy Model and Non-Dominated Sorting Genetic Algorithm, Metals, 11(12), 2060 (2021).

https://doi.org/10.3390/met11122060

Kazeem, R. A. and Jen, T. C., Performance assessment of Jatropha seed oil as lubricant during turning of AISI 1525 steel using Taguchi-grey relational analysis methodology, Int. J. Interact. Des. Manuf., 18(7), 1-15 (2024).

https://doi.org/10.1007/s12008-024-02112-6

Khadem, M., Kang, W. B. and Kim, D. E., Green Tribology: A Review of Biodegradable Lubricants—Properties, Current Status, and Future Improvement Trends, Int. J. Precis. Eng. Manuf. Green Technol., 11(2), 565–583 (2024).

https://doi.org/10.1007/s40684-023-00556-x

Krishna, P. S., Dayanand, S., Rajesh, M., Nagaral, M., Auradi, V. and Selvaraj, R., Preparation and Mechanical Characterization of TiC Particles Reinforced Al7075 Alloy Composites, Adv. Mater. Sci. Eng., 20221–11 (2022).

https://doi.org/10.1155/2022/7105189

Kuttan, A. A., Rajesh, R. and Anand, M. D., Employing Aluminium Matrix Composite for Stir Casting Process for Investigating the Performance of A1-6061, J. Inst. Eng. India Ser. D, 105(1), 395–403 (2024).

https://doi.org/10.1007/s40033-023-00469-8

Last, M., Luta, G., Orso, A., Porter, A. and Young, S., Pooled ANOVA, Comput. Stat. Data Anal., 52(12), 5215–5228 (2008).

https://doi.org/10.1016/j.csda.2008.04.024

Meng, F., Zhang, Z., Li, J., Li, J., Shi, C., Tian, B., Zhou, H. and Tong, D., A novel approach of composite turning for compacted graphite iron using minimum quantity lubrication and liquid nitrogen jetting by a developed setup, J. Manuf. Process., 117278–288 (2024).

https://doi.org/10.1016/j.jmapro.2024.03.021

Muthukumar, V., Suresh Babu, A., Venkatasamy, R. and Senthil, K. N., An Accelerated Particle Swarm Optimization Algorithm on Parametric Optimization of WEDM of Die-Steel, J. Inst. Eng. India Ser. C, 96(1), 49–56 (2015).

https://doi.org/10.1007/s40032-014-0143-z

Nayak, R. K., Pradhan, M. K. and Sahoo, A. K., Machining of Nanocomposites, 1st Ed., CRC Press, Boca Raton, (2022).

https://doi.org/10.1201/9781003107743

Omoniyi, P., Acharya, U., Akinlabi, S., Jen, T.-C. and Akinlabi, E., Taguchi-Grey relational analysis driven multi-objective optimization of weld bead geometry and hardness in laser welded Ti6Al4V Alloy, Int. J. Interact Des. Manuf., 19, 423–434 (2025).

https://doi.org/10.1007/s12008-024-01880-5

Ozkan, D., Panjan, P., Gok, M.S. and Karaoglanli, A.C., Experimental Study on Tool Wear and Delamination in Milling CFRPs with TiAlN- and TiN-Coated Tools, Coatings, 10(7), 623 (2020).

https://doi.org/10.3390/coatings10070623

Prvulovic, S., Mosorinski, P., Radosav, D., Tolmac, J., Josimovic, M. and Sinik, V., Determination of the temperature in the cutting zone while processing machine plastic using fuzzy-logic controller (FLC), Ain Shams Eng. J., 13(3), 101624 (2022).

https://doi.org/10.1016/j.asej.2021.10.019

Qiao, G., Zhang, B., Bai, Q., Gao, Y., Du, W. and Zhang, Y., Machinability of TiC-reinforced titanium matrix composites fabricated by additive manufacturing, J. Manuf. Process., 76412–418 (2022).

https://doi.org/10.1016/j.jmapro.2022.02.033

Sen, B. and Bhowmik, A., Application of minimum quantity GnP nanofluid and cryogenic LN2 in the machining of Hastelloy C276, Tribol. Int., 194, 109509 (2024).

https://doi.org/10.1016/j.triboint.2024.109509

Senthilkumar, N., Yuvaperiyasamy, M. and Deepanraj, B., Application of Taguchi design to optimize the operational parameters of pyramid solar still integrated with TiO2 nanoparticles, Eng. Res. Express, 6(4), 045540 (2024b).

https://doi.org/10.1088/2631-8695/ad8b0f

Shakeri, Z., Benfriha, K., Zirak, N. and Shirinbayan, M., Mechanical strength and shape accuracy optimization of polyamide FFF parts using grey relational analysis, Sci. Rep., 12(1), 13142 (2022).

https://doi.org/10.1038/s41598-022-17302-z

Sheikh, K.A. and Khan, M. M., Predictive modeling of abrasive wear in in-situ TiC reinforced ZA37 alloy: A machine learning approach, Tribol. Int., 202110291 (2025).

https://doi.org/10.1016/j.triboint.2024.110291

Sikdar, S., Rahman, M. H. and Menezes, P. L., Synergistic Study of Solid Lubricant Nano-Additives Incorporated in canola oil for Enhancing Energy Efficiency and Sustainability, Sustainability, 14(1), 290 (2021).

https://doi.org/10.3390/su14010290

Srinivasan, D., Senthilkumar, N., Ganesh, M. and Perumal, G., Characterization studies on nano aluminium composite reinforced with montmorillonite nanoclay and titanium carbide, Multiscale Multidiscip. Model. Exp. Des., 7(3), 2839–2859 (2024).

https://doi.org/10.1007/s41939-024-00374-x

Sundara, B. S. R., Ravindran, D. and Moshi, A. A. M., multi-response optimization of CNC turning parameters of austenitic stainless steel 303 using Taguchi-based grey relational analysis, Trans. Can. Soc. Mech. Eng., 44(4), 592–601 (2020).

https://doi.org/10.1139/tcsme-2019-0254

Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S. and Yano, H., Taguchi’s quality engineering handbook, John Wiley & Sons (2011).

https://doi.org/10.1002/9780470258354

Thakur, A., Manna, A. and Samir, S., Performance Evaluation of Al-SiC Nanofluids Based MQL Sustainable Cooling Techniques During Turning of EN-24 Steel, Silicon, 14(3), 869–882 (2022).

https://doi.org/10.1007/s12633-020-00875-7

Tzeng, C. J., Lin, Y. H., Yang, Y. K. and Jeng, M. C., Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis, J. Mater. Process. Technol., 209(6), 2753–2759 (2009).

https://doi.org/10.1016/j.jmatprotec.2008.06.046

Upadhyay, G. and Saxena, K. K., Role of Stir Casting in development of Aluminium Metal Matrix Composite (AMC): An Overview, IOP Conf. Ser. Mater. Sci. Eng., 1116(1), 012022 (2021).

https://doi.org/10.1088/1757-899X/1116/1/012022

Wakjira, M. W., Altenbach, H. and Perumalla, J. R., Analysis of CSN 12050 Carbon Steel in Dry Turning Process for Product Sustainability Optimization Using Taguchi Technique, J. Eng., 20191–10 (2019).

https://doi.org/10.1155/2019/7150157

Zubair, S. W. H., Arafat, S. M., Khan, S. A., Niazi, S. G., Rehan, M., Arshad, M. U., Hayat, N., Aized, T., Uddin, G. M. and Riaz, F., Coupling Taguchi experimental designs with deep adaptive learning enhanced AI process models for experimental cost savings in manufacturing process development, Sci. Rep., 14, 23428 (2024).

https://doi.org/10.1038/s41598-024-73669-1

Contact Us

Powered by

Powered by OJS