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ABSTRACT 

This study investigates the effect of graphene nanoplatelets (GNPs) dispersed minimum quantity lubrication 

(MQL) for improving the turning characteristics of aluminium composite comprising of LM25 as matrix and 10 wt.% of 

titanium carbide (TiC) as reinforcement fabricated via stir casting technique. Turning studies are performed on the turning 

center attached with MQL setup where different weight proportions of GNPs (1, 3, and 5 wt.%) are mixed with canola oil 

and supplied at the cutting zone. Experiments are designed by Taguchi’s method, an appropriate L9 orthogonal array is 

considered. The surface roughness (SR), and flank wear outcomes are measured and analyzed using grey relational analysis 

(GRA). Observation shows, the MQL consisting of 3 wt.% of GNPs provided lower FW and SR as it lowers the interface 

temperature at cutting zone and easy dispersal of chips. Increases in FW and SR are mostly attributable to changes in the 

feed rate. 
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1. INTRODUCTION

Machining aluminium composites reinforced 

with ceramic particles poses significant challenges owing 

to the ceramic reinforcement's abrasive and hard nature. 

During cutting, the interaction between the ceramic 

particles and the cutting tool generates high friction, 

leading to increased heat at the tool-workpiece interface 

(Nayak et al. 2022). This heat accelerates tool wear, 

particularly in conventional tools not designed for 

abrasive materials, resulting in rapid flank and crater 

wear. The hard particles can also chip or damage the 

cutting edge, reducing tool life and raising operational 

costs. Additionally, the uneven distribution of ceramic 

particles in the matrix often leads to inconsistencies in 

cutting force and cutting surface, which contributes to 

surface roughness and poor finish quality (Huo et al. 

2021). The presence of ceramic particles makes it 

difficult to achieve fine surface finishes, as the particles 

tend to tear or plough through the matrix material, 

creating irregularities. These challenges necessitate 

careful selection of cutting tools (coated carbide or 

diamond tools), optimized cutting parameters, and 

effective cooling and lubrication techniques to reduce 

heat, minimize wear, and improve surface finish during 

the machining of these composites (Atkins 2009). The 

softening of the cutting tool at increased machining 

circumstances causes a link between cutting region 

temperature and flank wear. The most important 

component for cutting region temperature is nose radius, 

which in turn influences flank wear.  

LM25 is an aluminium-silicon alloy prized for 

its advantageous mechanical qualities, high strength-to-

weight ratio, and resistance to corrosion. With a density 

of 2.68 g/cm3, 570-580°C of melting point and a thermal 

conductivity of about 155 W/mK, making it suitable for 

applications requiring efficient heat dissipation 

(Govindan and Raghuvaran, 2019). LM25+nSiC+MoS2 

composites was prepared via ultrasonic assisted stir 

casting technique and found that higher quantities of 

nSiC produced higher strength and addition of MoS2 

influenced the mechanical strength of the hybrid 

composite considerably. The porosity decreases 

considerably with rise in density. Taguchi’s technique 

was adopted for designing experiments and to optimize 

drilling parameters for lower thrust force and 

delamination. Drill diameter was shown to have the 

greatest impact on limiting thrust force, according to 

analysis of variance, whereas spindle speed was an 

extremely important component in lowering 

delamination (Raja et al. 2024). Machining studies on 

AA6061+ mica + boron carbide composite using 

response surface design was done and applied fuzzy logic 

to enhance the quality of output and optimized the 

outputs using metaheuristic algorithm and desirability 
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function. Outcome shows that the induced thrust force 

and torque decreased with rising spindle speed because 

of softening of matrix constituents (Kayaroganam et al. 

2021). 

Titanium carbide (TiC) has a high modulus of 

elasticity and outstanding compressive strength, which 

can enhance the stiffness and load-bearing capacity of 

aluminium composites. It also possesses a low density of 

4.93 g/cm³, compared to other ceramics, aiding in the 

creation of composites that are both lightweight and very 

strong-to-weight ratio (Srinivasan et al. 2024). 

Researchers found that the crater and scratch are the main 

defects in the machined surface of direct energy 

deposited Ti6Al4V-titanium carbide (TiC) composite. 

The machined surface flaws are reduced by the transfer 

of fine equiaxed TiC during cutting. Crush of coarse 

dendritic TiC particles causes tool coating peeling and 

adhesion. The additive manufacturing induced 

microstructure influences machinability (Qiao et al. 

2022). The machinability of the AMCs was found to be 

enhanced when TiC and MoS2 were included in AA7075, 

as compared to the basic material. Due of the lower 

ductility with reinforcing TiC and MoS2 microparticles, 

the chip shape changes from uninterrupted sheared chips 

in AA7075 to discrete chips in composite. Because the 

composites included hard TiC particles, their surfaces 

were rougher than the base alloy (Dhulipalla et al. 2020). 

ZA37 composites with 5 wt.% and 10 wt.% TiC were 

made via stir casting, showing enhanced properties. 

Rising TiC content lowered sample density but increased 

hardness notably from 131 Hv to 155 Hv. From wear 

studies, at lower loads, abrasion dominated, shifting to a 

mix of abrasion and delamination at higher loads. The 

density was decreased, and the hardness was enhanced 

when the TiC concentration was increased (Sheikh and 

Khan, 2025). 

A new MQL+LN2 composite cooling 

equipment was developed after an analysis of the effects 

of various injection spots on cooling and lubrication. It 

was used to investigate the impacts of various cooling 

techniques on surface roughness, forces, and tool wear of 

cutting grey cast iron (GCI) and compacted graphite iron 

(CGI).  Cutting CGI and GCI with composite cooling 

rather than MQL or LN2 or a mix of the two produced the 

smoothest surfaces, longest tool life, and least cutting 

forces, as compared to the other cutting fluids (Meng et 

al. 2024). The effectiveness of Cryo-NMQL in 

machining of Hastelloy C276 is investigated. Cutting 

force decreased by 25.49%, cutting temperature by 

29.84%, and roughness by 42.50% while using the Cryo-

NMQL medium instead of dry cutting. Tool wear 

diminished by 44.55% with less adhesion and abrasion 

thanks to this lubricating fluid. Chip morphological 

examination revealed a less serrated, finer lamella shape 

with cryo-NMQL (Sen and Bhowmik, 2024). Turning 

operations on AISI1525 steel was conducted employing 

Taguchi L9 arrays under different cooling circumstances 

by adjusting the machining parameters and 

simultaneously optimized surface roughness and cutting 

temperature. Across the board, the experimental trials for 

surface roughness demonstrated a substantial 68.04% 

enhancement for the jatropha oil lubricant compared to 

the mineral oil lubricant. First and foremost, spindle 

speed accounts for 28.14% of the total output reactions; 

second, depth of cut accounts for 24.40% (Kazeem and 

Jen, 2024). During the turning process of EN-24 steel, 

researchers looked at how different sustainable cooling 

methods affected the output properties. To create 

nanofluids, soluble oils were mixed with nanoparticles of 

SiC, Al2O3, and Al-SiC in various proportions of weight 

(0.5, 1, and 1.5wt.%). From the perspective of surface 

excellence, it is recommended to process EN-24 steel in 

a MQL atmosphere with Al-SiC/soluble oil hybrid NFs 

using a minimal feed rate along with a rapid cutting 

speed. By reducing the cutting speed and feed rate, tool 

wear may be minimized (Thakur et al. 2022). 

To lower the temperature at the cutting zone 

during turning of aluminium composites, a variety of 

lubricating and cooling techniques may be used to 

enhance heat dissipation and reduce tool wear. Flood 

cooling, cryogenic cooling, minimum quantity 

lubrication (MQL), and high-pressure cooling (HPC) are 

used to direct the coolants directly at the cutting zone 

(Boothroyd and Knight, 1989). Solid lubricants such as 

graphite or molybdenum disulfide can be added to the 

coolant or applied as a coating to the tool, forming a low-

friction layer that reduces heat generation. Unlike flood 

cooling, which requires larger quantity of coolants, MQL 

uses only a fine mist of lubricant, reducing coolant 

consumption, operational costs, and environmental 

impact associated with coolant disposal (Gupta and 

Davim, 2020). The oil mist in MQL effectively reduces 

friction and cutting forces at the interface of tool-

workpiece, resulting in lower heat production directly at 

the source rather than relying on coolant to carry it away. 

This helps improve surface finish quality, minimizes 

thermal deformation, and prolongs tool life by reducing 

wear, particularly in abrasive or hard-to-machine 

materials (Ali et al. 2025). 

The objective of this research work is to 

investigated the machining characteristics of aluminium 

composites, specifically LM25 reinforced with titanium 

carbide (TiC) particles, which presents unique challenges 

due to the hardness and abrasive nature of TiC, which 

tends to increase tool wear and surface roughness. To 

overcome this, nano-fluid assisted MQL system was 

considered to improve the surface integrity with lower 

tool wear and cutting forces. While considerable research 

has explored the effects of various coolants and 

lubrication methods on machining performance, a 

noticeable gap exists in understanding the specific 

impacts of MQL when used with uncoated carbide inserts 

on LM25-TiC composites. Previous studies have often 

focused on coated tools or alternative lubricants and 
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coolants, leaving limited insight into the performance of 

uncoated carbide inserts under MQL conditions in this 

composite context. This gap suggests a novel opportunity 

to investigate how MQL can influence tool wear, surface 

finish, and temperature control in machining LM25-TiC 

composites with uncoated carbide inserts, which may 

offer cost-effective and sustainable benefits. The novelty 

of the present study is to incorporate graphene 

nanoplatelets (GNPs) in the canola oil to develop and 

nano-fluid based MQL system which can minimize the 

adverse effects during turning. Taguchi’s technique is 

adopted for experimental design and the outputs are 

analysed and optimized with grey relational analysis to 

identify the most influential parameters and the optimal 

settings to produces better results. 

2. MATERIALS AND METHODS

2.1 Matrix and Reinforcement Material 

Aluminium alloy LM25 is used as the matrix 

which is supplemented with titanium carbide (TiC) 10 

wt.%, developed by means of ultrasonic assisted stir 

casting method. LM25 is an aluminium-silicon alloy 

prized for its advantageous mechanical qualities, high 

strength-to-weight ratio, and resistance to corrosion 

(Govindan and Raghuvaran, 2019). With a density of 

2.68 g/cm3, 570-580°C of melting point and a thermal 

conductivity of about 155 W/mK, making it suitable for 

applications requiring efficient heat dissipation. LM25 is 

commonly used in automotive and aerospace 

applications, where lightweight and durable materials are 

essential, as well as in marine environments and heat 

exchangers, benefiting from its corrosion resistance and 

thermal conductivity. TiC is a ceramic material 

characterized by its high melting point (around 3100°C), 

excellent thermal stability, and impressive hardness 3000 

HV (Srinivasan et al. 2024). TiC has a high modulus of 

elasticity and outstanding compressive strength, which 

can enhance the stiffness and load-bearing capacity of 

aluminium composites. It also possesses a low density of 

4.93 g/cm³, compared to other ceramics, aiding in the 

creation of composites that are both lightweight and very 

strong-to-weight ratio. Additionally, TiC offers good 

thermal conductivity, which helps improve heat 

dissipation in applications requiring thermal 

management suitable for high-performance uses in fields 

including aviation, automobiles, and military (Jiang et al. 

2017). 

2.2 Stir-casting Procedure for Fabrication of 
Composite 

Initially, LM25 alloy is cut into pieces and is 

heated to a molten state subjected to 750°C, to ensure 

complete melting. Once the alloy is molten, the TiC 

reinforcements are preheated separately to 300°C to 

eliminate any surface wetness and to enhance their 

wettability with the molten aluminium (Upadhyay and 

Saxena, 2021; Kuttan et al. 2024). To achieve a uniform 

distribution of the nano clay and TiC particles, 

mechanical stirring at 500 rpm is applied to the melt to 

further promote uniform particle distribution which 

improves the connection of matrix to the reinforcements, 

leading to a more homogenous composite structure. After 

exhaustive mixing, the molten composite is dispensed 

into warmed moulds and allowed to solidify, yielding a 

composite with improved mechanical properties, ideal 

for high-performance applications requiring lightweight, 

wear-resistant, and durable materials. 

2.3 Taguchi's Approach to Experiment Strategy 

Taguchi’s technique for designing experiments 

is a robust method that focuses on improving product 

quality by optimizing design and manufacturing 

processes (Taguchi et al. 2011; Hisam et al. 2024). 

Developed by Dr. Genichi Taguchi, this technique 

emphasizes reducing variability in a system’s 

performance, making it less sensitive to external and 

uncontrollable factors, or noise (Muthukumar et al. 

2015). Taguchi's approach involves using orthogonal 

arrays to systematically arrange experiments, allowing 

researchers to evaluate multiple variables with fewer 

experiments than traditional methods (Zubair et al. 

2024). This design strategy enables efficient 

identification of the most influential factors and their 

optimal levels, thereby saving time and resources 

(Senthilkumar et al. 2024). In this study, 4 parameters are 

considered for experimentation with a range of values as 

given in Table 1. 

Table 1. Input settings for experimentation 

Parameter Unit Notation -1 0 +1 

Cutting Speed m/min CS 100 200 300 

Feed Rate mm/rev FR 0.05 0.1 0.15 

Depth of Cut mm DoC 0.2 0.4 0.6 

Graphene 

Nanoplatelet 
% GNP 1 3 5 

2.4 Grey Relational Analysis 

One method under Grey System Theory for 

analysing connections and determining the level of 

resemblance or impact across numerous variables is grey 

relational analysis (GRA), especially when data is 

incomplete or uncertain (Tzeng et al. 2009). It’s 

particularly helpful in decision-making, where it ranks 

alternatives based on their performance relative to a 

reference (ideal) sequence. To start, GRA requires 

normalizing the data to make it dimensionless and 

comparable (Gunasekaran et al. 2024). Normalization is 

typically done using one of the following equations 

depending on whether a higher value, lower value, or 

fixed target is preferred. Let 𝑥𝑖(𝑘) represent the value of 
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the ith sequence at the 𝑘th factor or attribute (Omoniyi et 

al. 2024). Higher-is-best normalization, 

xi
′(k) =

xi(k)−min⁡(xi(k))

max(xi(k))−min⁡(xi(k))
… (1)

Lower-is-best normalization, 

xi
′(k) =

max(xi(k))−xi(k)

max(xi(k))−min⁡(xi(k))
… (2)

Define a reference sequence 𝑥0 based on the 

ideal or desired values for each attribute. The normalized 

value for the reference sequence is denoted as x0
′ (k),

which is generally the best-performing sequence (e.g., 

the maximum values for higher-is-better attributes) 

(Sundara et al. 2020).  

The grey relational coefficient (GRC) presents 

the relation amid the reference sequence and each 

alternative sequence. It is defined as: 

𝜉𝑖(𝑘) =
∆𝑚𝑖𝑛+𝜁∙∆𝑚𝑎𝑥

∆𝑖(𝑘)+𝜁∙∆𝑚𝑎𝑥
… (3)

Where ∆i(k) = |x0
′ (k) − xi

′(k)| is the absolute

variance amid the normalized reference and alternative 

values, ∆min= mini,k⁡∆i(k) is the smallest value of ∆i(k),

∆max= maxi,k⁡∆i(k) is the largest value of ∆i(k), ζ is the

distinguishing coefficient, typically set between 0 and 1 

(commonly, ζ=0.5) to control the sensitivity. The grey 

relational grade (GRG) reviews the complete relational 

degree between the reference and alternative sequences. 

It’s calculated by averaging the GRC for each attribute of 

a given sequence (Kamis and Acar, 2024): 

𝛾𝑖 =
1

𝑛
∑ 𝜉𝑖
𝑛
𝑘=1 (𝑘) … (4)

Where 𝛾𝑖 is the GRG for the ith sequence and n 
is the number of attributes. The alternatives are ranked 
based on the GRG 𝛾𝑖. A higher Grey relational grade 
indicates a closer relationship to the reference sequence, 
meaning that alternative is more desirable (Shakeri et al. 
2022). 

2.5 Experimental Setup 

A computer numeric control (CNC) based 

machining centre is used to turn the workpiece with an 

uncoated carbide cutting insert of nomenclature CNMG 

120404. For each trial a separate workpiece is considered 

with an insert cutting edge. The workpiece size is 

Ø10mm of length 150mm. Minimum quantity lubrication 

(MQL) setup was attached to the turning centre to 

provide mist of coolant at the cutting region. The MQL 

coolant is comprised of canola oil mixed with different 

weight proportions of graphene nanoplatelets (GNPs). 

Canola oil, a base oil that is well-known for its stability, 

sustainability, and excellent lubricity for GNP dispersion 

(Sikdar et al. 2021). Canola oil has excellent 

biodegradability, superior lubricity, and high thermal 

stability compared to synthetic and mineral-based 

lubricants. Its natural ester content provides strong 

adsorption on metal surfaces, reducing friction and wear 

more effectively. Canola oil also has a higher flash point, 

making it safer for high-temperature machining 

applications. When combined with GNPs, canola oil 

ensures stable dispersion of nanoparticles. Compared to 

synthetic and mineral-based oils, canola oil demonstrates 

superior performance in MQL by offering better wetting 

characteristics, ensuring uniform lubricant distribution at 

the tool-workpiece interface. Additionally, its eco-

friendly and non-toxic nature makes it a sustainable 

alternative, reducing health and environmental risks 

associated with petroleum-based lubricants. This 

combination of factors makes canola oil a highly 

effective choice for MQL applications, particularly when 

paired with GNPs to further enhance machining 

performance. The addition of GNPs; extremely thin, 

high-surface-area particles improves canola oil's 

lubricating and heat-conducting capabilities. To create a 

stable mixture, GNPs are dispersed in the oil using 

ultrasonic agitation or mechanical stirring, sometimes 

with a small amount of surfactant to prevent 

agglomeration (Banavathu et al. 2023). This GNP-

enhanced MQL coolant is then applied in precise, 

minimal amounts to the cutting zone, where it reduces 

friction, improves heat dissipation, and creates a 

smoother chip flow. The improved lubricity and cooling 

effect can help extend tool life, improve surface finish, 

and reduce energy consumption, making the combination 

of graphene nanoplatelets and canola oil an efficient, eco-

friendly choice for MQL in turning (Khadem et al. 2024). 

The experimental setup used is demonstrated in Fig. 1. 

Using GNPs dispersed in canola oil for 

machining LM25-TiC composites under MQL offers 

several key benefits, including enhanced lubrication, 

reduced tool wear, improved heat dissipation, and eco-

friendliness. GNPs, with their ultra-low friction 

coefficient, form a protective tribofilm at the tool-

workpiece interface, minimizing direct metal-to-metal 

contact and reducing cutting forces. Their excellent 

thermal conductivity facilitates efficient heat transfer 

away from the cutting zone, preventing excessive 

temperature buildup and thermal damage to both the tool 

and workpiece. Additionally, GNPs exhibit superior 

mechanical strength, which helps resist abrasive wear 

caused by the hard TiC particles present in the composite. 

The use of canola oil as a biodegradable base fluid further 

enhances sustainability while ensuring effective 

nanoparticle dispersion. This synergistic combination of 

GNPs and canola oil in the MQL approach leads to 

improved machining performance, better surface quality, 

and extended tool life, making it an efficient and 

environmentally friendly alternative to conventional 

lubrication methods. The primary motivation for 

incorporating GNPs into minimum quantity lubrication 

(MQL) for machining lies in their exceptional 
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tribological properties, including high thermal 

conductivity, superior lubricity, and excellent 

mechanical strength. GNPs form a protective layer at the 

tool-chip interface, reducing friction, minimizing tool 

wear, and enhancing heat dissipation, which leads to 

improved machining performance and surface quality. 

This approach distinguishes itself from other lubrication 

techniques, such as nanofluids containing TiO₂ or MoS₂ 

nanoparticles, by offering a unique combination of ultra-

low friction and superior thermal management without 

excessive particle agglomeration or clogging issues 

commonly associated with spherical nanoparticles. 

Additionally, graphene’s two-dimensional structure 

allows for effective load distribution and enhanced 

penetration into the cutting zone, making it particularly 

advantageous in high-speed and precision machining 

applications. 

3. RESULTS AND DISCUSSION

3.1 Metallography Inference 

The fabricated specimen (LM25+10%TiC) via 

stir casting technique is characterized for its 

microstructure as presented in Fig. 2. The uniform 

dispersal of TiC particles is seen from the micrographs 

which will enhance the mechanical strength of the 

composite. No crack, voids and discontinuities are 

visualized (Krishna et al. 2022). 

3.2 Investigation of Input Parameters 

Table 2 presents the input experimental design, 

and the output performance measures obtained from 

experiments. Surface roughness is tested using a 

Mitutoyo Surfboarder SJ1200, while flank wear is 

examined with a Mitutoyo create tool manufacturers 

microscope. 

Observation from measured outputs present 

that, as the CS increases there is a substantial rise in FW 

and SR, similar is the case for FR also. At higher CS, the 

temperature at the cutting region rises significantly, 

leading to increased friction and thermal stress on the tool 

(Prvulovic et al. 2022). This elevated heat weakens the 

tool material and promotes faster wear along the tool’s 

flank, a critical area that impacts tool longevity and 

machining precision. Similarly, an increase in FR 

elevates the forces exerted on both the tool and 

workpiece, which results in larger material removal per 

unit time but also exacerbates the load on the cutting tool 

(Ercetin et al. 2023).  

The combined effect of higher CSs and FRs 

often leads to rougher surface finishes due to the 

aggressive cutting conditions and the more pronounced 

tool wear. The FW and SR tends to lower when the DOC 

is transformed from 0.2 mm to 0.4 mm, after which a rise 

in FW and SR is sensed when the DOC is further 

increased to 0.6 mm. A lower DOC may lead to excessive 

tool rubbing and increased contact with the workpiece, 

causing friction-induced wear and a rougher 

surface(Abellán et al. 2024). Conversely, higher DoC 

amplifies cutting forces and thermal stress, accelerating 

FW and potentially chipping the tool edge, which further 

deteriorates surface quality. Thus, an optimal, moderate 

DOC is crucial in achieving both lower FW and a reduced 

SR.  

Fig. 1: MQL setup during machining 

Fig.2: SEM micrograph of LM25+10%TiC 

Table 2. Input array and experimental outputs 
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1 100 0.05 0.2 1 1.44 1.144 

2 100 0.1 0.4 3 1.21 0.966 

3 100 0.15 0.6 5 1.78 1.526 

4 200 0.05 0.4 5 1.46 1.249 

5 200 0.1 0.6 1 1.78 1.136 

6 200 0.15 0.2 3 2.45 1.513 

7 300 0.05 0.6 3 2.08 1.413 

8 300 0.1 0.2 5 2.14 1.551 

9 300 0.15 0.4 1 2.72 1.629 
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The FR and CS significantly affect lubrication 

performance, influencing both SR and FW. At lower FRs 

and moderate CSs, the MQL system with GNPs performs 

optimally, as the lubricant effectively penetrates the tool-

workpiece interface, forming a stable tribofilm that 

reduces friction and wear. However, at higher FRs, the 

increased material removal rate leads to higher cutting 

forces, limiting the lubricant's ability to maintain 

effective coverage, thereby increasing SR and FW. 

Similarly, at very high CSs, excessive heat generation 

can degrade the lubricant film, reducing its effectiveness 

and accelerating FW. Conversely, at extremely low CSs 

insufficient heat generation may hinder the activation of 

GNPs’ lubricating properties. A general pattern observed 

is that moderate CS with low to medium FRs yield the 

best surface finish and lowest FW, while excessive FRs 

and CSs lead to deteriorating lubrication performance, 

resulting in higher SR and accelerated FW. 

The inclusion of GNPs in the MQL system 
enhances the machinability of composite (Altaf et al. 
2024). The FW tends to lower with higher GNP content 
in the MQL whereas the SR tends to lower until 3 wt.% 
addition of GNPs, when the inclusion of GNPs is at 5 
wt.%, the SR tends to increase. inclusion of GNPs in 
MQL effectively reduce both FW and SR due to their 
outstanding lubricating capabilities and high thermal 
conductivity, create a protective layer between the tool 
and workpiece. GNPs have a high surface area to volume 
ratio and the developed layer reduces direct contact and 
friction at the interface, thereby decreasing FW. The high 
thermal conductivity of graphene also helps dissipate 
heat more efficiently from the cutting zone, preventing 
excessive temperature buildup that can accelerate wear 
and compromise surface quality (Ishfaq et al. 2022). The 
machining performance of LM25-TiC composites under 
MQL with GNPs peaked at 3 wt.% because this 
concentration provided the optimal balance between 
lubrication, thermal conductivity, and dispersion 
stability. At 5 wt.%, the performance decreased due to 
excessive GNPs leading to agglomeration, which led to 
uneven dispersion and clogging at the tool-workpiece 
interface. This agglomeration reduced the lubricating 
efficiency, increasing friction and tool wear instead of 
reducing it. Additionally, an overly thick tribofilm might 
have disrupted the cutting process, causing instability in 
chip formation and heat dissipation. Fig. 3 and Fig. 4 
presents the contour plot showing the influence of input 
conditions over the FW and SR.  

3.3 Multi-criteria Optimization of Outputs 

For determining the optimal conditions, GRA is 

applied, and the procedure followed, and outputs are 

tabularized in Table 3. The investigational datasets 

(outputs) are initially normalized (converting between 0 

and 1) for both FW and SR. The next step is to govern 

the deviation of the normalized value from the ideal value 

of 1 and subsequently the grey relational coefficient 

(GRC) for FW and SR is determined. Considering equal 

weightage (50%), the grey relational grade (GRG) is 

calculated. The lowest value of GRG is near to black (0) 

and the higher value is closer to 1 (white) (Anand et al. 

2022). 

By averaging the GRG values corresponding to 

individual level values of input parameters, the response 

table for GRG is formulated, as shown in Table 4. From 

the response table values, main effects plot (Fig. 5) is 

drawn to identify the ideal conditions which are: CS of 

100 m/min, FR of 0.1 mm/rev, DOC of 0.4 mm and 3 

wt.% GNP inclusions in MQL system. The impact of CS 

is higher, shadowed by FR, DOC, and % of GNPs. 

Fig. 3: Variation of FW for the inputs 

Fig. 4: Variation of SR for the inputs 
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To identify the influence of combined 
parameters, interaction plot is drawn as presented in Fig. 
6. When two or more factors in an experiment interact,
their combined effect on the response differs from the 
sum of their individual effects. Interaction plots visually 
depict these effects by plotting the levels of one factor on 
the x-axis and showing the response means for each level 
of another factor, often with lines representing different 
factor levels (Wakjira et al. 2019). There seems to be 
little to no interaction across the variables if their lines 
are parallel; if they cross or diverge, it indicates that the 
factors interact and their effects on the response are 
dependent on each other (Phadke, 2021).  

Among CS and FR, there is considerable 
interaction for CS of 100 m/min and for a FR of 0.05 
mm/rev, whereas for other values, there is no significant 
interaction. But among CS and DOC and CS and % 
GNPs there is a considerable relationship which 
significantly impacts the output responses. When FR 
combines with DOC and % GNPs, there is a significant 
interaction and among DOC and % GNP. This clearly 
illustrates that the combined influence is higher than the 
individual impact on the output responses. 

3.4 Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is a statistical 

technique used to analyze experimental datasets to 

determine the significance of dissimilar factors on a 

response variable. By partitioning the total variance in 

the dataset, ANOVA isolates the variability attributed to 

each factor, distinguishing it from random errors. A high 

F-ratio indicates a significant effect, suggesting that 

changes in that factor meaningfully impact the response, 

a p-value below a pre-determined threshold (often 0.05) 

confirms that the factor's influence is unlikely due to 

chance.  

The ANOVA table for GRG is presented in 
Table 5, which shows that the table cannot be formulated 
as the error degrees of freedom (DoF) is zero. Hence 
pooling ANOVA desires to be done. ANOVA pooling is 
a technique used to improve the reliability of statistical 
tests when certain factor effects are deemed statistically 
insignificant. In ANOVA, each factor or interaction term 
contributes to the total variance in the dataset. However, 
when some factors or interactions show negligible 
influence on the response, pooling combines their mean 
squares with the residual error term to increase the 
degrees of freedom for error estimation. This process 
refines the analysis by reducing random noise and 
improving the accuracy of the F-ratio for the remaining 
significant factors (Harrer et al. 2021). 

Fig. 5: Main effects plot for GRG

Table 3. GRA table for outputs 

Trial No. 
Normalizing Sequence Deviation Sequence GRC 

GRG 
FW SR FW SR FW SR 

1 0.848 0.732 0.152 0.268 0.766 0.651 0.709 

2 1.000 1.000 0.000 0.000 1.000 1.000 1.000 

3 0.623 0.155 0.377 0.845 0.570 0.372 0.471 

4 0.834 0.573 0.166 0.427 0.751 0.539 0.645 

5 0.623 0.744 0.377 0.256 0.570 0.661 0.615 

6 0.179 0.175 0.821 0.825 0.378 0.377 0.378 

7 0.424 0.326 0.576 0.674 0.465 0.426 0.445 

8 0.384 0.118 0.616 0.882 0.448 0.362 0.405 

9 0.000 0.000 1.000 1.000 0.333 0.333 0.333 

Table 4. Response table for GRG 

Factors Level 1 Level 2 Level 3 Max - Min Rank 

Cutting Speed 0.726 0.546 0.394 0.332 1 

Feed Rate 0.600 0.673 0.394 0.279 2 

Depth of Cut 0.497 0.660 0.510 0.162 3 

% GNP 0.552 0.608 0.507 0.101 4 
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Fig. 6: Interaction plot for GRG 

Table 5. ANOVA table for GRG 

Source DoF Adj SS Adj MS F-Value P-Value 

Cutting Speed 2 0.16573 0.082864 * * 

Feed Rate 2 0.12582 0.062908 * * 

Depth of Cut 2 0.04879 0.024395 * * 

GNP % 2 0.01525 0.007627 * * 

Error 0 * * 

Total 8 0.35559 

Pooling serves two main purposes: it 

strengthens the power of the ANOVA test by better 

estimating the error term, and it simplifies the model by 

excluding insignificant terms. This is particularly 

beneficial in experiments with limited data, as pooling 

increases the reliability of statistical conclusions (Last et 

al. 2008). The ANOVA table after pooling is presented 

in Table 6. The insignificant term (% GNP) is combined 

with the error term and analysis is done. A significant 

variance exists among all the variables, the F value for 

CS is higher showing that the influence of CS is 

maximum that the other input parameters. The R2 value 

obtained during analysis is 95.71% with an R2-adjusted 

value of 82.84%. The % contribution of each input 

parameter, excluding the insignificant term (% GNP) is 

presented in Figure 7. The CS contributes by 46.61%, FR 

by 35.38%, DOC by 13.72%, and error term by 4.29% 

which is within the 95% confidence interval (CI) 

(Bhushan, 2023). 

Table 6. Pooled ANOVA for GRG 

Source DF Adj SS Adj MS F-Value P-Value 

Cutting Speed 2 0.16573 0.082864 10.86 0.084 

Feed Rate 2 0.12582 0.062908 8.25 0.108 

Depth of Cut 2 0.04879 0.024395 3.20 0.238 

Error 2 0.01525 0.007627 

Total 8 0.35559 

Fig. 7: % Contribution of individual parameters on GRG 

Fig. 8 presents the tool insert flank face where 

the wear has occurred which clearly shows that the wear 

had occurred due to adhesion and delamination owing to 

increased friction and heat production at the cutting zone 

as a result of shearing (Ozkan et al. 2020). 

Fig. 8:  Flank wear of optimal machining conditions 

4. CONCLUSION

The MQL assisted machining studies on the 

LM25+10%TiC composite using GNPs dispersed in 

canola oil shows the following outcomes. 

1. With stir casting technique, the SEM image shows

uniform dispersal of TiC particles without any

defects, which will enhance the mechanical strength

of the composite.

2. Turning studies show that as the CS increases there

is a substantial rise in FW and SR, similar is the case

for FR also. Similarly, an increase in FR elevates
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the forces exercised on equally the tool and 

workpiece. The combined effect of higher CSs and 

FRs often leads to rougher surface finishes due to 

the aggressive cutting conditions and the more 

pronounced tool wear. A moderate DOC favors the 

output. 

3. The FW tends to lower with higher GNP content in

the MQL whereas the SR tends to lower until 3

wt.% addition of GNPs, when the inclusion of

GNPs is at 5 wt.%, the SR tends to increase.

4. From Mult objective GRA, the optimal conditions

identified are CS of 100 m/min, FR of 0.1 mm/rev,

DOC of 0.4 mm and 3 wt.% GNP inclusion in MQL

system. ANOVA shows a contribution of CS by

46.61%, FR by 35.38%, and DOC by 13.72%.

5. A considerable correlation exists among CS and

DOC and CS and % GNPs which significantly

impacts the output responses. Similarly, among, FR

with DOC and % GNPs, there is a significant

interaction and also among DOC and % GNP.
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