Open Access

Analyzing Disease Detection Dynamics with Nano Biosensors: an Analytical Approach Using the Homotopy Perturbation Method

V. Sreelatha Devi, Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, TN, India K. Saranya saranyak463@gmail.com
Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, TN, India


J. Environ. Nanotechnol., Volume 14, No 1 (2025) pp. 347-358

https://doi.org/10.13074/jent.2025.03.2441052

PDF


Abstract

This study is necessary for early and accurate detection of infectious diseases including tuberculosis, cholera, and COVID-19 using nano biosensors. The paper primarily models and analyzes the detection dynamics among the circulating human population divided into susceptible, exposed, infected, detected, and recovered compartments. The detection dynamics are ruled by a system of nonlinear differential equations that will be solved analytically using the HPM to obtain the numerical solution. Graphical representations are used to explain the detection process and show how nano biosensors play a role in identifying and mitigating disease spread. The import of this work lies in the advancement of understanding the detection mechanisms of disease and providing a framework for improving performance in biosensors. The outcome reveals that applying HPM is feasible for modeling diseases, and discussions have identified some of the advantages of this method compared to other mathematical ones, which could be further used in simulation-based comparisons towards validation and optimization.

Full Text

Reference


Ahmad, N., COVID-19 Modeling in Saudi Arabia Using the Modified Susceptible-Exposed-Infectious-Recovered (SEIR) Model, Cureus., 12(9), e10452, (2020).

https://doi.org/10.7759/cureus.10452

Akbari, R., Navaei, L. and Shahriari, M., Dynamical Behaviour of Fractional Order ‎‎SEIR‎ ‎Mathematical Model for Infectious Disease Transmission, Comput. Biol. Med., 9(1), (2024).

https://doi.org/10.30473/coam.2023.64849.1210

Anitha, L., Vadivukarasi, L., Selvamani, R., Dimitri, R. and Tornabene, F., Nonlinear poro thermal vibration and parametric excitation in a magneto-elastic embedded nanobeam using homotopy perturbation technique, De Gruyter Open Access, 11(1), 20240013(2024).

https://doi.org/10.1515/cls-2024-0013

Chunyan, J. and Jiang, D., Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38(21–22), 5067–5079(2014).

https://doi.org/10.1016/j.apm.2014.03.037

Dixit, R., Panda, D. S. and Panda, S. S., An Advanced Susceptible-Exposed-Infectious-Recovered model for quantitative analysis of COVID-19, Sadhana, 46(2), 85(2021).

https://doi.org/10.1007/s12046-021-01617-0

Govindan, V., Xin, X., Vignesh, S., Sudha, P. N., Sankeshwari, S. N., Vairavel, T. M., Prakash, R., Chithra, S. M. and Bala, A. J., Steady state concentration in an amperometric biosensor using mathematical modeling, Mod. Phys. Lett. B., 38(16), 2341004(2024).

https://doi.org/10.1142/S021798492341004X

Heng, K. and Althaus, C. L., The approximately universal shapes of epidemic curves in the Susceptible-Exposed-Infectious-Recovered (SEIR) model, Sci. Rep., 10(1), 19365(2020).

https://doi.org/10.1038/s41598-020-76563-8

Jung, S., Kim, J. H., Hwang, S. S., Choi, J. and Lee, W., Modified susceptible–exposed–infectious–recovered model for assessing the effectiveness of non-pharmaceutical interventions during the COVID-19 pandemic in Seoul, J. Theor. Biol., 557, 111329(2023).

https://doi.org/10.1016/j.jtbi.2022.111329

Kerry, G. R., Ukhurebor, K. E., Kumari, S., Maurya, G. K., Patra, S., Panigrahi, B., Majhi, S., Rout, J. R., Rodriguez-Torres, M. D. P., Das, G., Shin, H. S. and Patra, J. K., A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection, Biomater Sci., 9(10), 3576–3602(2021).

https://doi.org/10.1039/D0BM02164D

Kulkarni, M. B., Ayachit, N. H. and Aminabhavi, T. M., Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope, Biosens., 12(10), 892(2022).

https://doi.org/10.3390/bios12100892

Ma, X., Tian, Y., Yang, R., Wang, H., Allahou, L. W., Chang, J., Williams, G., Knowles, J. C. and Poma, A., Nanotechnology in healthcare, and its safety and environmental risks, J. Nanobiotechnol., 22(1), 715(2024).

https://doi.org/10.1186/s12951-024-02901-x

Maugeri, A., Barchitta, M., Battiato, S. and Agodi, A., Estimation of Unreported Novel Coronavirus (SARS-CoV-2) Infections from Reported Deaths: A Susceptible–Exposed–Infectious–Recovered–Dead Model, J. Commerce Manage, 9(5), 1350(2020).

https://doi.org/10.3390/jcm9051350

Mishra, R. K. and Rajakumari, R., Nanobiosensors for Biomedical Application,. In: Characterization and Biology of Nanomaterials for Drug Delivery, Elsevier, 1–23 (2019).

https://doi.org/10.1016/B978-0-12-814031-4.00001-5

Ramesh, M., Janani, R., Deepa, C. and Rajeshkumar, L., Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications, Biosens., 13(1), 40(2022).

https://doi.org/10.3390/bios13010040

Ranjani, K., Swaminathan, R. and Karpagavalli, S. G., Mathematical modelling of three-layer amperometric biosensor and analytical expressions using homotopy perturbation method, Partial Differ. Equations Appl. Math., 11, 100755(2024).

https://doi.org/10.1016/j.padiff.2024.100755

Sabariah, S. and Tee, C., A COVID-19 vaccine effectiveness model using the susceptible-exposed-infectious-recovered model, Healthcare Anal., 4, 100269(2023).

https://doi.org/10.1016/j.health.2023.100269

Saranya, K., Mohan, V. and Rajendran, L., Analytical Solution of the Non-Linear Equation in Biodegradation of N-Butanol in a Biofilter, Asian J. Arts Culture, 11(04), 172–186(2020).

https://doi.org/10.4236/ajac.2020.114013

Selvamani, R., Thangamuni, P., Yaylacı, M., Emin Özdemir, M., & Yaylacı, E. U. Nonlinear vibration and parametric magneto-thermoelastic embedded nanobeam excitation using the Homotopy Perturbation Technique. ZAMM— J. Appl. Math. Mech. Z. Angew. Math. Mechanik, 10(12), e202400525 (2024).

https://doi.org/10.1002/zamm.202400525

Shanthi, D., Ananthaswamy, V. and Rajendran, L. Approximate analytical expressions for non-linear boundary value problems in an amperometric biosensor using the New Homotopy Perturbation Method. Int. J. Mod. Math. Sci., 10(3), 201–209 (2014).

Sreejith, S., Ajayan, J., Radhika, J. M., Uma Reddy, N. V. and Manikandan, M., Recent advances in nano biosensors: An overview, Meas., 236, 115073(2024).

https://doi.org/10.1016/j.measurement.2024.115073

Suganya, S. T., Rajendran, L. and Lyons, M. E. G., Analytical Expression of Concentrations and Current in Enzyme-Based Two-Compartment Model of Amperometric Biosensors for Steady-State Condition, Int. J. Electrochem. Sci., 17(2), 220238(2022).

https://doi.org/10.20964/2022.02.09

Swaminathan, R., Narayanan, K. L., Mohan, V., Saranya, K. and Rajendran, L., Reaction/Diffusion Equation with Michaelis-Menten Kinetics in Microdisk Biosensor: Homotopy Perturbation Method Approach, Int. J. Electrochem. Sci., 14(4), 3777–3791(2019).

https://doi.org/10.20964/2019.04.13

Wang, J., Chen, G., Jiang, H., Li, Z. and Wang, X. Advances in nano-scaled biosensors for biomedical applications. Anal., 138(16), 4427–4435(2013).

https://doi.org/10.3390/s22197539

Contact Us

Powered by

Powered by OJS