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ABSTRACT 

This study is necessary for early and accurate detection of infectious diseases including tuberculosis, cholera, and 

COVID-19 using nano biosensors. The paper primarily models and analyzes the detection dynamics among the circulating 

human population divided into susceptible, exposed, infected, detected, and recovered compartments. The detection 

dynamics are ruled by a system of nonlinear differential equations that will be solved analytically using the HPM to obtain 

the numerical solution. Graphical representations are used to explain the detection process and show how nano biosensors 

play a role in identifying and mitigating disease spread. The import of this work lies in the advancement of understanding 

the detection mechanisms of disease and providing a framework for improving performance in biosensors. The outcome 

reveals that applying HPM is feasible for modeling diseases, and discussions have identified some of the advantages of this 

method compared to other mathematical ones, which could be further used in simulation-based comparisons towards 

validation and optimization. 
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1. INTRODUCTION

Infectious diseases have become more complex 

in diagnosis and management because of high 

transmission rates and the hurdle in early detection. Nano 

biosensors open a new horizon in detecting diseases at 

the molecular level, allowing for real-time analysis and 

enhanced response to outbreaks. Nano-scaled biosensors, 

which combine nanomaterials and nanostructures, have 

been installed for biomedical applications such as 

pathogenic bacteria monitoring, virus recognition, and 

disease biomarker detection (Wang et al. 2013).  Nano-

biosensors offer several advantages and are ideally suited 

to biomedical applications, which could be made as 

extremely flexible devices that allow biomedical analysis 

with speediness, excellent selectivity, and high 

sensitivity (Kulkarni et al. 2022). 

Nano biosensors detect biological markers of 

several diseases, providing an important tool for early 

intervention. In most cases, nanomaterials will be used to 

improve the sensitivity and specificity of a detection 

system to allow diagnoses at earlier stages and with 

greater accuracy. This paper provides a model of disease 

detection using nano biosensors based on compartmental 

dynamics and derives an analytical solution using the 

Homotopy Perturbation Method (HPM) (Kerry et al. 

2021). Nano biosensors came into existence from two 

disciplines namely Nanotechnology and Biosensors. 

Usually, these are the types of sensors that come from 

nanomaterials, and the interesting thing is that they have 

not been mentioned here. Still, these are not the dedicated 

sensors that can catch such nano-range 

measures/activities. Nanomaterials with profound 

physiochemical properties that may differ intensely from 

the nanostructures generated at a macroscale belong 

exclusively to humanity from nanotechnology (Ramesh 

et al. 2023). 

The global spread of infectious diseases has a 

significant negative impact with even large outbreaks 

such as COVID-19, tuberculosis and cholera 

emphasising the need for improved detection and control 

measures. There is no need to emphasize that the early 

and accurate identification of pathogens is a valuable tool 

for disease management, as it can allow timely 

interventions to halt widespread transmission and 

ultimately save lives (Mishra et al. 2019). Herein, nano 

biosensors have been developed as a potential approach 

in disease diagnosis with their reliable high sensitivity 

and specificity and real-time monitoring ability. These 

high-level devices use nanomaterial characteristics to 

identify the biomarkers at the milli-molecular level; 

hence, they effectively identify any disease in its initial 

stages (Ma et al. 2024). 

Nanobiosensors, when used appropriately, can 

find an important place in modern disease detection by 

identifying and confirming infections early and 

accurately-as in the case of the disease-causing agents 

which manifest as tuberculosis, cholera, and COVID-19. 

https://crossmark.crossref.org/dialog?doi=10.13074/jent.2025.03.2441079&domain=pdf&date_stamp=2025-03-30
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These biosensing devices can detect the biomarkers at 

extremely low concentrations through the incorporation 

of nanomaterials and biosensing technologies, paving the 

way for real-time monitoring for rapid intervention 

against outbreaks of infectious diseases. In this study, the 

dynamics of infectious disease detection are modeled 

using a SEIRD compartmental framework (Susceptible, 

Exposed, Infected, Detected, Recovered); while solving 

the mathematical modeling problem via Homotopy 

Perturbation Method (HPM) to analyze the improvement 

in disease detection rates attributed to nanobiosensors 

and the reduction in the spread of diseases. Nano 

biosensors have the potential to improve disease 

diagnosis early and rapidly with great accuracy. Such 

early diagnosis will facilitate timely medical intervention 

and better treatment outcomes for patients. Earlier 

diagnosis greatly improves the chances of containing 

disease outbreaks and will limit further propagation 

within communities through early diagnosis of diseases 

that are usually asymptomatic. Their integration within 

the public health strategies can boost global surveillance 

capability-a help in monitoring, predicting, and control 

of infectious diseases more efficiently. Furthermore, 

technological developments in nanomaterial-based 

biosensors would provide the selectivity, stability, and 

sensitivity plus cost-effectiveness that are key factors that 

make them a proposed solution for large-scale 

implementation in healthcare systems around the globe. 

Real-time monitoring capability allows for better 

outbreak management and reduced mortality along with 

enhanced preparedness for pandemic response, 

particularly in resource-limited settings. The integration 

of mathematical programming and biosensor technology 

in this study gives the necessary background for 

identification and intervention strategies for a more 

impactful global public health response. 

Mathematical modeling can help us more 

comprehensively understand disease detection/dynamics 

and the impact of early intervention using nano 

biosensors. Compartmental model-based dynamics 

predict the disease transduction within a host population 

and the efficacies of various strategies, such as nano-

biosensors, which detect these pathogens and curtail their 

spread (Govindan et al. 2024). PDE modeling of disease 

detection dynamics uses nonlinear differential equations 

describing the flow between compartments in 

susceptible, exposed, infected, detected, and recovered 

populations.Nanoparticles are integrated during 

fabrication, and the resulting biosensors are called nano-

biosensors. Nanomaterials are always the most 

investigated and examined because of the wide range of 

bioanalytical activities they provide in fields such as bio-

imaging, diagnostics, medication administration, and the 

treatment they enable (Ranjani et al. 2024). 

These nonlinear systems are solved best using 

analytical methods, such as HPM. HPM is a semi-

analytical method that can be effectively used to 

approximate solutions for nonlinear equations by 

reducing a complicated problem into a relatively simple 

problem with the help of a homotopy parameter (Saranya 

et al. 2020). It applies exceptionally effectively when 

traditional numerical approaches are too involved or 

time-consuming. Applying HPM helps introduce 

valuable information regarding how nano biosensors 

affect disease discovery and re-collection rates, hence 

improving detection strategies and ultimately reducing 

infections (Suganya et al. 2022). 

This work finds an analytical solution to the 

disease detection dynamics using nano biosensors. Such 

a project, however, will comprise a mathematical model 

that exposes the ability of nano biosensors to alter the 

disease dynamics and solve the potential deployment 

systems for optimizing biosensor work in disease control. 

Despite the immense potential, the current application of 

nanotechnology in medicines and medical devices faces 

substantial technical challenges within the complex 

regulatory policies (Sreejith et al. 2024). 

2. MATHEMATICAL MODEL FORMULATION

A mathematical model in disease detection by 

nano biosensors can be built by dividing the population 

into five compartments representing different disease 

progression stages. The population is divided into five 

compartments (Maugeri et al. 2020; Jung et al. 2023). 

• Susceptible (S): Individuals who are vulnerable to

contracting the disease.

• Exposed (E): Individuals exposed to the disease

are not yet symptomatic.

• Infected (I): Infected but asymptomatic persons

who have not yet been detected.

• Detected (D): Infected persons who nano

biosensors have detected.

• Recovered (R): Persons who have recovered from

the disease after either being detected or infected.

The total population N(t),at any time t, is the 

sum of these compartments: 

N(t) = S(t) + E(t) + I(t) + D(t) + R(t)      … (1)

The dynamics between these compartments are 

governed by a nonlinear ordinary differential equations 

(ODEs) system. The susceptible population decreases as 

they get exposed to the disease, and exposed individuals 

progress to the infected stage at a rate σ. Infected 

individuals are either detected by nano biosensors at a 

rate α or remain undetected. Detected individuals can 

then recover at a rate μ, while the overall system may 

experience natural or disease-related death rates 

(Sabariah et al. 2023; Ahmad et al. 2020). 
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The following set of differential equations 

governs the dynamics of disease transmission and 

detection using nano biosensors: 

2.1 Susceptible Population 

The susceptible population refers to the 

individuals who have not encountered the disease but are 

likely to be infected. The group has no immunity and can 

be easily infected if exposed to an infected person. In a 

disease detection model, the susceptible group is the most 

important because the disease spread rate mainly depends 

on the interactions of the susceptible and infected 

populations. Preventive measures like vaccination or 

preventive behavior can reduce susceptible individuals 

and significantly mitigate the spread of the disease. 

dS(t)

dt
= −βS(t)I(t)         … (2)

where β is the infection rate. 

2.2 Exposed Population 

The exposed population is those who have 

already been infected but are either not symptomatic or 

cannot be picked up by conventional methods or nano 

biosensors. This is the incubation period where the 

disease is present but not yet contagious or symptomatic 

in the individual. The exposed population is crucial in the 

model. It plays a vital role in disease dynamics since it 

will eventually move into the infected category and 

contribute to the spread of the disease once its infection 

becomes active (Heng et al. 2020). 

dE(t)

dt
= βS(t)I(t) − σE(t)         … (3)

where σ is the rate at which exposed individuals become 

infected. 

2.3 Infected Population 

This population consists of those infected; it is 

therefore represented by individuals who have begun 

developing symptoms or are within the infectious phase 

of the disease. These individuals can spread the disease 

amongst others and thus tend to be the center of treatment 

or detection efforts. In this model, the infected 

population, being critical for spreading the disease, 

shares it with the susceptible population. One main focus 

on controlling the outbreak is to reduce the number of 

infected individuals through detection and isolation 

(Dixit et al. 2021). 

dI(t)

dt
= σE(t) − (α + δ)I(t)         … (4)

where α is the rate at which nano biosensors 

detect infected individuals, andδ is the disease-induced 

death rate. 

2.4 Detected Population 

It is the population that has been detected to be 

infected through nano biosensors or any other type of 

diagnostic tool. The ability to detect earlier makes it 

possible to intervene early and initiate treatment on time 

to prevent further transmission. Recovering or further 

isolating detected patients would reduce the impression 

of the disease on the population. This compartment 

emphasizes the role of technology in managing and 

controlling the spread of disease by ensuring timely 

intervention (Chunyan et al. 2014). 

dD(t)

dt
= αI(t) − μD(t)         … (5)

where μ is the recovery rate for detected 

individuals. 

2.5 Recovered Population 

Recovered are those who have recovered from 

the infection and are no longer at risk for transmitting it, 

usually due to treatment or induction of natural 

immunity. In many models, recovery is associated with 

inducing immunity, such that recovered individuals are 

reinfected. The recovered population increases as 

individuals who are infected and detected recover from 

the treatment. This group determines the long-term 

consequences of a disease outbreak; many recoveries 

tend to contribute to herd immunity and reduce disease 

spread within the entire population (Akbari et al. 2024). 

dR(t)

dt
= τI(t) + μD(t)         … (6)

where τ is the recovery rate 

2.6 Initial Conditions 

We assume the following initial conditions for 

the system: 

S(0)=S0, E(0)=E0, I(0)=I0, D(0)= D0, R(0)=R0 … (7)

These represent the initial population sizes in 

each compartment at time t=0. 

2.7 Advantages of HPM 

The following are the advantages posed in the 

modeling of disease detection dynamics using nano 

biosensors via nonlinear differential equations solution 

using Modified Homotopy Perturbation Method 

(MHPM). This approximation reduces the long 

computational time in comparison with classical 

numerical methods like the Runge-Kutta method. 

Another point of advantage comes from the fact that no 

small perturbation parameter is required, as is done in the 

classical perturbation technique, which makes HPM 

more flexible in treating highly nonlinear problems. It is 
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quite simple, and its implementation is straightforward; 

it reduces a complex nonlinear equation to a series of 

simpler solvable equations while retaining accuracy. The 

method gives more insight into parameter dependencies, 

which help epidemiologists in analysing effects of 

detection rate, infection rate, and recovery rate in 

developing disease models. HPM is truly remarkable in 

being widespread across several scientific fields-that 

includes epidemiology, nanotechnology, and biosensor 

optimization-representing the real versatility the method 

offers. Combining an accurate solution with 

computational efficiency and cope creates a unique 

proposition for using that type of method. Thus, a 

powerful method for improving mathematical modeling 

for disease detection and biosensor technology 

development exists in homotopy perturbation method. 

3. SOLVING THE SYSTEM OF EQUATIONS

The system of differential equations can be 

solved numerically using methods such as the Runge-

Kutta method for ordinary differential equations. We can, 

however, find approximate solutions using the 

Homotopy Perturbation Method (HPM) (Shanthi et al. 

2014). 

3.1 Homotopy Perturbation Method (HPM)

The Homotopy Perturbation Method (HPM) is a 

semi-analytical technique for solving linear and 

nonlinear differential equations. It combines the classical 

perturbation techniques with the homotopy concept in 

topology (Selvamani et al. 2024; Swaminathan et al. 

2019; Anitha et al. 2024). One starts by deforming a 

complex problem into a simpler one, easily solved as a 

power series expansion. The steps to be followed are the 

following: 

3.1.1 Define the Problem (Nonlinear System of Equations)  

The compartments of the disease detection 

model are represented by the following set of nonlinear 

ordinary differential equations (ODEs) that we are 

working with: 

dS(t)

dt
= −βS(t)I(t)         … (8)

dE(t)

dt
= βS(t)I(t) − σE(t)         … (9)

dI(t)

dt
= σE(t) − (α + δ)I(t)         … (10)

dD(t)

dt
= αI(t) − μD(t)         … (11)

dR(t)

dt
= τI(t) + μD(t)         … (12)

These equations model the interactions between 

the Susceptible (S), Exposed (E), Infected (I), Detected 

(D), and Recovered (R) populations, along with 

parameters like infection rate (β), detection rate (α), and 

recovery rate (μ). 

3.1.2 Construct the Homotopy 

The key idea of HPM is to construct a homotopy 

that continuously deforms a complex problem into an 

easy one. We introduce a homotopy parameter p∈[0,1], 

such that when p=0, the problem is reduced to a simple, 

solvable form, and when p=1, the original problem is 

retrieved. 

We define the homotopy H(ν,p)as: 

H(ν, p) = (1 − p)L(ν) + pN(ν)  … (13) 

L(ν) represents a simplified version of the 

problem, typically a linear approximation and N(ν) 

represents the nonlinear system of equations. 

For each differential equation, we introduce the 

homotopy as: 

H(ν, p) = (1 − p)[ Linear operator] + p[ Nonlinear operator]  

… (14)

At p=0, the solution is easy to find; at p=1, it 

corresponds to the solution of the complete nonlinear 

problem. 

3.1.3 Expand the Solution as a Power Series 

We assume that the solution can be expanded in 

a power series in p: 

S(t) =  S0(t) + pS1(t) + p2S2(t) + ⋯   … (15)

E(t) =  E0(t) + pE1(t) + p2E2(t) + ⋯   … (16)

I(t) =  I0(t) + pI1(t) + p2I1(t) + ⋯   … (17)

D(t) =  D0(t) + pD1(t) + p2D2(t) + ⋯   … (18)

R(t) =  R0(t) + pR1(t) + p2R2(t) + ⋯   … (19)

3.1.4 Substitute the Series into the Homotopy Equation 

Substitute the power series expansion for each 

differential equation into the homotopy equation. This 

will give a series of equations in terms of powers of p. 

For example, for the Susceptible equation: 

dS(t)

dt
= −βS(t)I(t)         … (20)

Substituting the series expansion for S(t) and 

I(t), we get: 
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d

dt
(S0 (t)+pS1(t)+p2S2(t)+…) = −β(S0(t)+pS1(t)+…)(I0

(t)+pI1(t)) … (21)

3.1.5 Equating Powers of p 

By equating the coefficients of like powers of p, 

we get a system of equations to solve for each S0(t),S1(t),

…  

For example, at p0:

dS0(t)

dt
= −βS0(t)I0(t) … (22)

At p0:

dS1(t)

dt
= −β(S0(t)I1(t) + S1(t)I0(t))  … (23)

Solve each equation iteratively, starting from 

the most straightforward equation. 

3.1.6 Iterative Solution 

Start with the initial approximation S0, E0, I0,

D0, R0. These are typically chosen based on the initial

conditions of the problem. Then, solve for higher-order 

terms 𝑆1(𝑡), 𝑆2(𝑡) , …

3.1.7 Summing the Series 

Once the termsS0(t), S1(t), S2(t), … are found,

the solution for S(t) is:S(t) = S0(t) + S1(t) + S2(t) + ⋯

Similarly, for other compartments: 

E(t) = E0(t) + E1(t) + ⋯ ; I(t) = I0(t) + I1(t) + ⋯  … (24) 

D(t) = D0(t) + D1(t) + ⋯ ;     R(t) = R0(t) + R1(t) + ⋯  … (25) 

3.1.8 Solution for Our Model 

Given the complexity of solving this system, we 

can rely on symbolic or numerical computation software 

(e.g., MATLAB, Mathematica) to calculate the solution. 

3.2 Approximate Solution for Susceptible S(t) 

Let us consider, S(0)=S0 , I(0)=I0. At time S(t)

approximate to: 

S(t) ≈ S0e−βI0t … (26)

This indicates that the population of the 

susceptible drops down as the infection continues. 

Although these solutions for S(t) may be applied, other 

approximate solutions will still need to be made for E(t), 

I(t), D(t), and R(t). 

4. RESULT AND DISCUSSION

Hereafter, for the solution form, a schematic 

profile of S(t), E(t), I(t), D(t), and R(t) with time will be 

sketched to show the actual disease spreading by the role 

of nano biosensors in recognizing infections. The 

analytically expressed solutions for the different 

compartments are given below. Such solutions will 

provide a fascinating insight into how different 

parameters, such as detection rate (α) and infection rate 

(β), affect the disease detection process through nano 

biosensors. Simulating these solutions will help optimize 

detection techniques and early diagnosis and treatment 

responses. 

Fig. 1: Shows the dynamics of the susceptible compartment 
over time 

Fig. 2: Displays the dynamics of the exposed compartment 
over time 

Figure 1 shows the change in the susceptible 

population over time as disease spreads. The x-axis 

represents time in days, while the y-axis indicates the 

total amount of susceptible individuals. The blue curve 

rapidly drops down, indicating a high rate of 

transmission, where the individual quickly moves into 

either the infected or detected state. Rapid decline, 

especially during the first 30 days, indicates the disease  
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operates aggressively, decreasing the count of the 

uninfected cohort in short time trajectories. Over time, 

the shape of the curve approaches zero, meaning that 

almost all individuals are sick, recovered, or detected. 

This follows the structure of epidemic models like 

SEIRD (Susceptible-Exposed-Infected-Recovered-

Detected), meaning that effective surveillance systems, 

such as nano-biosensors, are important for early detection 

and containment of further cases. The figure emphasizes 

the importance of early intervention strategies in the 

successful outbreak control and improvement of public 

health. 

Fig. 3: Shows the dynamics of the infected compartment 
over time 

Fig. 4: Displays the dynamics of the detected compartment 
over time 

Figure 2 trails the decline of the exposed 

population in some period, presumably within such an 

epidemiological frame as the SEIR model (Susceptible-

Exposed-Infectious-Recovered). The x-axis means time, 

in days, the y-axis refers to the number of individuals in 

the exposed category. Initially, the exposed population 

was at around 900 but exponentially decreased in time to 

very close to zero. This is indicative that people were 

exiting the exposed category, by either becoming 

infectious or due to recovery mechanisms like quarantine 

or immunity. The red curve, labeled "Exposed," 

illustrates this process-a rapid decline in the beginning 

followed by slower change. The general behavior of the 

curve suggests that disease transmission and intervention 

measures cause a drastic change in the number of 

exposed people over time. 

Figure 3 shows the dynamics of infected 

individuals over time in the epidemiological model. The 

x-axis represents time in days, and the y-axis denotes the 

number of infected population. Infected population 

increases sharply and reaches a maximum of about 250 

in the first 10 days. This implies early rapid 

infectiousness around the onset of the outbreak. After this 

peak, infected individuals drop significantly, which could 

be interpreted as victims either recovering, becoming 

immune, or being placed under some sort of intervention 

regimes. By day 40, the curve dips below zero, indicating 

artifacts in the model (numeric inaccuracies) or even 

overestimation of transitions in the total population. 

Oscillations/re-emergence may be observed around day 

60. Here the infected population is stabilizing around

zero. The green curve labeled as "Infected" captures these 

dynamics, thereby indicating that there is a potential 

cyclic nature of disease transmission possibly dictated by 

factors such as reinfection, waning immunity, or other 

external interventions. 

Fig. 5: Displays the dynamics of the recovered compartment 
over time 

Figure 4 delineates the detected population over 

time within the context of an epidemiological model. The 

x-axis reflects days while the y-axis indicates the number 

of detected cases. The magenta curve denoted with 

"Detected" illustrates a continuous upwards motion in 

detected cases, from zero to around 12,000 by roughly 

day 80. This shows that as time passes, it is expected that 

more members of the population will become detected, 

quite possibly from an increase in testing, surveillance, 

or just the natural course of the outbreak. Toward the end, 

a small decline appears in the detected population, 



V. Sreelatha Devi and K. Saranya / J. Environ. Nanotechnol., Vol. 14(1), 347-358 (2025) 

353 

possibly resulting from recovery, the diminished 

existence of the infected population in the community, or 

modification in detection tactics, etc. The shape of the 

curve shows that it is cumulative, where the percentage 

detection in early days rises at an exponential pace and 

then flattens once the outbreak stabilizes. 

Fig. 6: Displays the SEIRD model with nano biosensor 
integration 

Figure 5 represents the recovered population 

rises within time during an epidemic that is likely to have 

been modeled using an SIR (Susceptible-Infected-

Recovered) framework. In the x-axis, time in days, 

ranging from 0 to 100, is represented. In the y-direction, 

the number of recovered goes from 0 up to about 700. 

Starting at zero, the curve in cyan illustrates the S-shaped 

growth where rapid growth is followed by leveling off. 

Hence, the rate of recovery is increasing with an increase 

in the number of people infected and recovering; rate of 

recovery will slow down as the outbreak is controlled and 

fewer members of society become infected. The initial 

leveling suggests that most of the population has gained 

immunity or that the spread of the infection is drastically 

reduced. 

In Figure 6, SEIRD diagram shows the 100-day 

dynamics of the disease: close to "Detected" in the 

SEIRD model, probably showing the impact of nano 

biosensors in outbreak management. The susceptible 

population (blue) drops rapidly as the exposure (red, 

dashed) spikes early on, before being transitioned to the 

infected state (green, dotted), which, later, would reduce 

as recovery or detection takes place. The detected 

population (magenta, dashed) raises steadily, as nano 

biosensors play a role in spotting infections, eventually 

plateauing when the detecting levelled off. In parallel, 

there is the slow increase and stabilization of the 

recovered population (cyan) which indicates control over 

the outbreak or herd immunity. This underscores the 

influence of early detection on the epidemic's rate and 

resolution. 

4.1 Limitations and Challenges of Using HPM 

Although the Homotopy Perturbation Method 

(HPM) is efficient and computationally feasible for 

solving nonlinear differential equations in disease 

detection modeling, it has many limitations and 

challenges. An important one is that HPM yields an 

approximate analytical solution, rather than the exact 

solution, meaning that its accuracy depends on the 

number of terms kept in the perturbation series. The 

greater the number of terms, the more complex the 

mathematics of the higher-order approximations, which 

requires higher computational resources. HPM is for 

deterministic models, thus making it less suited for 

stochastic variations in disease spread, for instance, 

random variations of transmission rates or external 

environmental influences driving the process. The 

convergence of HPM strongly reposes on a somewhat 

well-selected starting approximation, which might hinder 

if roots are not guessed appropriately. Further, while 

HPM can effectively model disease detection dynamics, 

the practical implementation requires further validation 

via numerical simulations and real-world 

epidemiological data. These will be very important in 

addressing their challenges of hybrid modeling, 

enhanced numerical statistics, and advanced 

computational technologies toward optimizing the use of 

HPM for disease detection and biosensor applications. 

4.2 Role of Simulations in Refining the Model 
and Validation Criteria 

The incorporation of simulations is the key for 

refining the mathematical model, as it enables research to 

test a variety of combinations of different parameter 

values, detect detection efficiency, and maximize 

biosensor deployment strategies. By simulating the 

dynamics of different disease under different 

circumstances, adjustments to the model could be made 

for it to be able to adequately represent the real-world 

patterns of disease detection. Through computation 

simulation, an investigation will be made into the 

influence of various detection rates (α), infection rates 

(β), and recovery rates (μ) on disease spread and 

containment, thereby improving model prediction 

capabilities.   

To examine the accuracy and reliability of the 

predictions made by the model, several validity tests will 

be used. First, the comparative analysis with real-world 

epidemiologic data from previous outbreaks of infectious 

diseases (such as COVID-19, tuberculosis, and cholera) 

will assess how well the model replicates real disease 

trends. In addition to this, error analysis and convergence 

testing will evaluate how far away the numerical 

simulations' analytical solutions are via the Homotopy 

Perturbation Method (HPM), thereby allowing 

consistency in the obtained results. The model must 

furnish evidence of reproducibility, that is, producing 
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similar predictions in the simulation when put under 

comparable input conditions. And lastly, critical metrics 

such as time to detection, height of the infection peak, 

and recovery trends will be assessed to show that the 

model would distinctively handle the impact of nano 

biosensors on disease detection. This series of validation 

will embolden confidence in the model's use to advance 

disease surveillance and optimize biosensor-based 

detection strategies. 

5. APPLICATION OF THE HOMOTOPY
PERTURBATION METHOD 

Homotopy perturbation approach HPM is a 

potent analytical method geared towards solving 

nonlinear equations that may be experienced in different 

applications, such as nanotechnology. Let us look at the 

problem in nanotechnology. 

5.1 Application of HPM in Nano-biosensors 

The Homotopy Perturbation Method presents a 

modeling technique for analysing the dynamics of 

disease detection using nano biosensors. This technique 

provides complete approximate analytical solutions with 

very low computational costs than fully numerical 

methods. The Homotopy Perturbation Method generally 

reduces complexity while maintaining efficiency and 

accuracy as compared with traditional numerical 

techniques such as the Runge-Kutta method, which 

demands a considerable number of computational 

resources to solve nonlinear differential equations. In 

such cases, HPM is highly suitable for real-time disease 

monitoring and the integration of biosensors as faster and 

reasonably correct solutions are produced. However, 

while HPM is efficient in computational terms, it has 

limitations when it comes to being used for highly 

complex and mathematical large-scale epidemiological 

models. The precision of HPM is an equation that 

deviates with the number of terms in the perturbation 

series, so extremely nonlinear systems can become very 

arduous to generate a higher-order approximation. 

Furthermore, whereas HPM is probably more amenable 

for deterministic models, it might very likely require 

some modification for incorporating stochastic elements 

inherent in real-world detection of diseases. 

Nevertheless, HPM has always remained a potent 

application in optimizing disease detection models. With 

HPM, simulation runs much faster and allows one to fine-

tune the performance of nano biosensors and deployment 

strategies. By combining the real-time data from 

biosensors with machine learning algorithms and HPM-

based models, its computational feasibility can be further 

improved. This makes it a viable and scalable option to 

enhancing global disease surveillance and outbreak 

management. 

5.2 Inferring the Diffusion of Nanoparticles in a 
Biologic Medium  

5.2.1 Problem Statement 

Let us look at the biological medium diffusion 

of nanoparticles. This process is also described using the 

nonlinear diffusion equation. Targeted delivery of drugs 

using nanoparticles to specific cells or tissues deserves 

such importance. The diffusion equation can be 

expressed as. 

∂C

∂t
= D

∂2C

∂x2
+ αC2

Where 

• C(x,t) represents the concentration of 

nanoparticles at position x and time t.

• D stands for the diffusion constant.

• α repose a reaction rate constant, generally

assumed to represent the interaction of

nanoparticles with the biological milieu.

The boundary conditions of the problem could be: 

• C(0,t)=C0, where C0 is the initial concentration

of nanoparticles at x=0,

• 
∂C

∂x
(L, t) = 0 at x=L, indicating no flux at the 

boundary. 

5.2.2 Step-by-Step Solution Using HPM 

Step 1: Construct the Homotopy 

The HPM introduces a homotopy parameter 

p∈[0,1] and constructs a homotopy that continuously 

deforms from an initial approximation to the exact 

solution. We rewrite the original equation as follows: 

∂C

∂t
= D

∂2C

∂x2
+ αC2

We introduce a homotopy function: 

H(C, p) = (1 − p) (
∂C

∂t
− D

∂2C

∂x2
)

+ p (
∂C

∂t
− D

∂2C

∂x2
− αC2) = 0

For p=0, we have the linear problem: 

∂C

∂t
= D

∂2C

∂x2
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For p=1, we recover the original nonlinear problem. 

Step 2: Express C as a Power Series in p 

We assume the solution C(x,t) can be expressed 

as a power series in p: 

C(x, t) =  C0(x, t) + pC1(x, t) + p2C2(x, t) + ⋯

When p=1, this series gives the exact solution. 

Step 3: Substitute the Series into the Homotopy Equation 

Substituting the series expansion into the 

homotopy equationH(C,p)=0, we get: 

∂(C0 + pC1 + p2C2)

∂t

= D
∂2(C0 + pC1 + p2C2)

∂x2

+ pα(C0 + pC1 + ⋯ )2

Matching terms with the same power of p: 

For p0:

∂C0

∂t
= D

∂2C0

∂x2

This is a linear diffusion equation. 

For p1:

∂C1

∂t
= D

∂2C1

∂x2
+ αC0

2

Step 4: Solve the Resulting Equations Sequentially 

Solving for C0(x, t) 

The linear equation for C0:

∂C0

∂t
= D

∂2C0

∂x2

Assume an initial condition C0(x, 0) =
C0 exp(−λx2), a typical form for diffusion processes.

The solution is: 

C0(x, 0) = C0 exp(−λx2) exp(−Dλt)

Solving for C1 (x,t)

Substituting C0(x,t) into the equation for C1:

∂C1

∂t
= D

∂2C1

∂x2
+ αC0

2

This partial differential equation can be solved 

using standard techniques like the separation of variables, 

and the result is a more complex solution, which also 

includes the effect of the nonlinear interaction term αC0
2.

Step 5: Construct the Final Solution 

The final solution for C(x,t) will be the initial 

terms' sum. 

C(x, t) =  C0(x, t) + C1(x, t) + C2(x, t) + ⋯

Interpretation of the Solution: 

The HPM provides an approximative analytical 

solution to the nonlinear diffusion equation that describes 

nanoparticle transport in biological tissue. The first term 

C0 is a linear solution, and all terms beyond the first are

in principle nonlinear. 

5.3 Heat Transfer in Nanofluids Application 

Nanofluids are fluids that have small, suspended 

nanoparticles. This implies improved thermal properties 

and greater applicability in heat transfer systems such as 

electronic cooling or heat exchangers. A typical problem 

involves determining the temperature distribution in a 

nanofluid flowing through a channel. 

5.3.1 Problem Statement 

A 1D heat transfer model for a nanofluid is 

given by the following nonlinear partial differential 

equation:  

∂T

∂t
= k

∂2T

∂x2
+ αTn

Where: 

T(x,t) - is the temperature distribution, 

k - is the thermal conductivity, 

α - is a coefficient representing the heat generation 

due to nanoparticles, 

n - is a constant representing the degree of 

nonlinearity. 

5.3.2 Solution Procedure using HPM 

Now predict T by constructing the homotopy: 

Let the homotopy equation be: 

H(T, p) = (1 − p) (
∂T

∂t
− k

∂2T

∂x2
)

+ p (
∂T

∂t
− k

∂2T

∂x2
− αTn) = 0

Let p∈[0,1] denote the parameter embedding. 
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Step 1: Expand T(x,t) as a power series in p. 

T(x, t) =  T0(x, t) + pT1(x, t) + p2T2(x, t) + ⋯

Substituting in a homotopy equation: 

Subsequently, we can collect the coefficient for each 

power of p and solve them sequentially: 

p0term gives:

∂T0

∂t
= k

∂2T0

∂x2

The solution is of the form: 

T0(x, t) = Aexp(−kλ2t) cos(λx)
Where initial and boundary conditions 

determine A and λ. 

p1 term gives:

∂T1

∂t
= k

∂2T1

∂x2
+ αT0

n

Substituting T0(x, t) into this equation:

∂T1

∂t
= k

∂2T1

∂x2
+ α(Aexp(−kλ2t) cos(λx))n

AssumingT1 = Bexp(−kλ2t) cos(λx), substituting back,

we can solve for B. 

The final solution combining both terms up to the first 

order in p is approximately: 

T(x, t) ≈ A exp(−kλ2t) cos(λx) +
αAn

(kλ2)n
(1

− exp(−nkλ2t) )cos(λx)

The complete solution provides insight into how 

nanoparticles influence heat transfer, aiding in 

optimizing nanofluid-based cooling systems. 

5.4 Reaction Kinetics of Nanocatalysts 
Application 

Nanocatalysts enhance reaction rates due to 

their large surface area, playing a significant role in 

chemical processes like hydrogen production or pollutant 

degradation. Understanding their kinetics can involve 

solving nonlinear rate equations. 

5.4.1 Problem Statement 

Consider a chemical reaction catalyzed by 

nanoparticles with the following nonlinear ordinary 

differential equation representing the concentration C(t) 

of a reactant: 

∂C

∂t
= −kCm

Where: 

C(t) - is the concentration of the reactant over time, 

k - is the reaction rate constant, 

m - is an order of reaction that might be non-integer 

due to nanoscale effects. 

5.4.2 Step-by-Step Solution Using HPM 

Step 1:  Construct the homotopy: 

Create a homotopy equation: 

H(C, p) = (1 − p) (
∂C

∂t
+ kC) + p (

∂C

∂t
+ kCm) = 0

Step 2: Expand C(t) as a power series in p: 

C(t) =  C0(t) + pC1(t) + p2C2(t) + ⋯

Step 3: Substitute into the homotopyequation:Collecting 

terms of the same power in p, solve sequentially: 

p0term gives:

∂C0

∂t
= −kC0

The solution is of the form: 

C0(t) = C(0)e−kt

p1 term gives:

∂C1

∂t
= −kC1 + kC0

m

Substituting C0(t) = C(0)e−kt into this equation:

∂C1

∂t
= −kC1 + k(C(0)e−kt)

m

To solve this, use an integrating factor(t) = ekt

ekt
∂C1

∂t
+ kektC1 = kC(0)me−k(m−1)t

Integrating both sides gives: 

C1(t) =
C(0)m

1 − m
(e−k(m−1)t − e−kt)

The final solution for C(t) combiningC0(t) + C1(t) is

C(t) ≈ C0(t)e−kt +
C(0)m

1 − m
(e−k(m−1)t − e−kt)

These solutions give insight into the behavior of 

nanofluid heat transfer and nanocatalyst reaction kinetics 

using the Homotopy Perturbation Method (HPM). These 

solutions help understand the enhanced catalytic activity 
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of nanoparticles and optimize conditions for industrial 

chemical processes. 

6. CONCLUSION

This study explicitly demonstrates the potential 

of nano biosensors as a disruptive technology for the 

early and accurate detection of infectious diseases like 

tuberculosis, cholera, and COVID-19. The dynamics of 

disease detection by incorporating a compartmental 

model governed by nonlinear differential equations 

proved very effective. The HPM provided a good and 

efficient method of solving these equations, offering an 

apparent analytic and numerical understanding of the 

detection process. Graphical results focus on how nano 

biosensors can affect the spread of diseases by producing 

and identifying infections promptly. Moreover, the work 

lays a solid foundation that could lead to the optimization 

of biosensor performance in real life and contributes to 

more advanced insight regarding mechanisms of disease 

detection. Results are described with the benefits of HPM 

during the disease modeling, accompanied in the 

simulation-based validations and refinements for ensuing 

implementations of biosensors into global health 

applications. 

Future Directions and Enhancements in Nano-
biosensor Modeling 

The next phase of this research will focus on 

enhancing the mathematical model to improve the 

precision and functionality of nano biosensor-based 

disease detection systems. One of the main 

improvements will consist in the incorporation of 

stochastic elements, meaning that these new components 

will allow for a much better representation of the real-

world variability in terms of disease transmission and 

existing rates of detection. Furthermore, the inclusion of 

real-time epidemiological data in the models will be 

prioritized, as it allows predictions made by the model to 

correlate with real-world disease events. To then further 

optimize nano biosensor technologies, we will focus on 

hybrid modeling approaches, combining the Homotopy 

Perturbation Method with advanced numerical 

techniques for improved computational accuracy and 

efficiency. This helps guide the adaptation of disease 

conditions within the model and reinforce the predictive 

abilities of biosensor-based surveillance systems.   

Another crucial step is model validation with 

larger scale simulation and live biosensor data, which 

provides the insight into how different detection rates (α) 

and intervention strategies affect the disease spread and 

containment. Other efforts may include integration of the 

model with machine learning algorithms to allow 

automated optimization of biosensor performance with 

dynamism in disease spreads. In the end, these initiatives 

will lead to the development of a more powerful, 

scalable, and more globally relevant nano biosensor 

system which can find application in early disease 

detection, preventing outbreak and better decision-

making by public health managers. 
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