Open Access

Investigation of Screen Mesh Wick Heat Conduit using Aluminum Oxide Nanofluid with Deionized Water as the Base Working Fluid

C. Senthilkumar, senthilkumarsnsct@gmail.com
Department of Mechanical Engineering, SNS College of Technology, Saravanampatti, Coimbatore, TN, India
J. Yogaraja, Department of Automobile Engineering, Hindusthan College of Engineering and Technology, Coimbatore, TN, India T. Srinivasa Rao, Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India L. Karthick Department of Mechanical Engineering, Hindusthan College of Engineering and Technology, Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp. 406-416

https://doi.org/10.13074/jent.2024.12.2441027

PDF


Abstract

This investigation was focused on analyzing heat conduits' heat energy transport characteristics using deionized water and aluminum oxide nanofluid as the working media. By varying the angle of inclination of the heat conduit from 0 to 90° and adjusting the heat load from 40 to 200W, comparisons were made between deionized water (base fluid) and water-soluble Al2O3 nanofluid. Performance evaluation parameters included thermal efficiency, heat resistance, and heat transfer coefficient. Compared to the base fluid, the use of the nanofluid improved the thermal performance of the screen mesh wick heat conduit, as evidenced by the experimental findings. The heat transfer coefficient increased from 5.68 to 21.7% due to the enhanced heat load and changed orientation due to gravitational effects. Furthermore, the overall thermal resistance decreased from 6.85 to 17.7% with the rise in heat load and orientation. Incorporating nanoparticles and altering the orientation not only expanded the operational range but also enhanced the overall thermal efficiency of the heat conduit when compared to the base fluid.

Full Text

Reference


Bharathiraja, R., Ramkumar, T., Karthick L. and Mohanraj, M., Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM), J. Energy Storage, 86, 111163 (2024).

https://doi.org/10.1016/j.est.2024.111163

Bumataria, R. and Chavda, N., Heat load and orientation impacts in cylindrical heat pipes using copper oxide, aluminium oxide, and zinc oxide nanofluids, Int. J. Ambient. Energy, 43(1), 6273–6283(2022).

https://doi.org/10.1080/01430750.2021.2014957

Celata, G. P., Annibale, F., Mariani, A., Saraceno, L., Amato, R. and Bubbico, R., Heat Transfer in Water-Based SiC and TiO2 Nanofluids, Heat Transfer. Eng., 34(13), 1060–1072(2013).

https://doi.org/10.1080/01457632.2013.763542

Do, K. H. and Jang, S. P., Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, Int. J. Heat Mass Transfer, 53(9–10), 2183–2192(2010).

https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.020

Kang, S. W., Wei, W. C., Tsai, S. H. and Yang, S. Y., Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. Therm. Eng., 26(17–18), 2377–2382(2006).

https://doi.org/10.1016/j.applthermaleng.2006.02.020

Karthick, L., Senthil, M. V., Leon, J. L. S., Mallampati, M., Ahamed, M. and Loganathan, G. B., Energy performance of a compression refrigeration cycle using environment-friendly refrigerants, Mater. Today: Proc., 66(3), 1519–1525(2022).

https://doi.org/10.1016/j.matpr.2022.07.178

Karthick, L., Loganathan, G. B., Jagadish, C. A., Somasundaram, B., Kandavalli, S. R. and Chithambaranathan, P., Microhardness and Wear Rate Analysis on Laser Cladded Composites of AZ91D Alloy with SiC by Grey Technique, Recent Adv. Mech. Eng., 2, 235–249 (2024).

https://doi.org/10.1007/978-981-97-2249-5_21

Moraveji, K. and Razvarz, S., Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, Int. Commun. Heat. Mass Transfer, 39(9), 1444–1448(2012).

https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024

Kim, H. D., Kim, J. and Kim, M. H., Experimental studies on CHF characteristics of nano-fluids at pool boiling, Int. J. Multiphase. Flow, 33(7), 691–706(2007).

https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007

Kumaresan, G., Venkatachalapathy, S. and Asirvatham, L. G., Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids, Int. J. Heat Mass Transfer, 72, 507–516(2014).

https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.029

Ma, H. B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., Choi, S. U. S. and Tirumala, M., Effect of nanofluid on the heat transport capability in an oscillating heat pipe, Appl. Phys. Lett., 88(14), 143116(2006).

https://doi.org/10.1063/1.2192971

Manay, E., Experimental investigation of mixed convection heat transfer of ferrite-based nanofluids in multiple microchannels, Heat. Mass. Transfer., 55(2), 533–546(2019).

https://doi.org/10.1007/s00231-018-2505-1

Mohanraj, M., Karthick, L. and Dhivagar, R., Performance and economic analysis of a heat pump water heater assisted regenerative solar still using latent heat storage, Appl. Therm. Eng., 196, 117-263(2021).

https://doi.org/10.1016/j.applthermaleng.2021.117263

Naphon, P., Assadamongkol, P. and Borirak, T., Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency, Int. Commun. Heat. Mass Transfer, 35(10), 1316–1319(2008).

https://doi.org/10.1016/j.icheatmasstransfer.2008.07.010

Pak, B. C. and Cho, Y. I., hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11(2), 151–170(1998).

https://doi.org/10.1080/08916159808946559

Park, K. and Ma, H. B., Nanofluid Effect on the Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe, J. Thermophysics. Heat Transfer, 21(2), 443–445(2007).

https://doi.org/10.2514/1.22409

Razvarz, S. and Jafari, R., Experimental study of Al2O3 nanofluids on the thermal efficiency of curved heat pipe at different tilt angle, J. Nanomater., 2018(1), 1591247 (2018).

https://doi.org/10.1155/2018/1591247

Senthilkumar, C., Krishnan, A. S. and Solomon, A. B., Effect of thin porous copper coating on the performance of wickless heat pipe with R134a as working fluid, J. Therm. Anal. Calorim., 139(2), 963–973(2020).

https://doi.org/10.1007/s10973-019-08176-x

Senthilkumar, R., Vaidyanathan, S. and Sivaraman, B., Effect of Inclination Angle in Heat Pipe Performance Using Copper Nanofluid, Procedia Eng., 38, 3715–3721(2012).

https://doi.org/10.1016/j.proeng.2012.06.427

Sharma, H. K., Kumar, S., Kumar, S. and Verma, S. K., Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system, J. Energy Storage, 55, 105681(2022).

https://doi.org/10.1016/j.est.2022.105681

Shukla, K. N., Solomon, A. B., Pillai, B. C., Ruba Singh, B. J. and Saravana Kumar, S., Thermal performance of heat pipe with suspended nano-particles, Heat Mass Transfer, 48(11), 1913–1920(2012).

https://doi.org/10.1007/s00231-012-1028-4

Vidhya, R., Balakrishnan, T. and Kumar, B. S., Experimental and theoretical investigation of heat transfer characteristics of cylindrical heat pipe using Al2O3–SiO2/W-EG hybrid nanofluids by RSM modeling approach, J. Eng. Appl. Sci., 68(1), 32(2021).

https://doi.org/10.1186/s44147-021-00034-8

Contact Us

Powered by

Powered by OJS