Open Access

Wear Performance of Hybrid Ceramic Strengthened Nano-Aluminium Composites for Potential Application in Brake Discs

S Sundaraselvan, Arasu Engineering College K Velavan, Sri Sairam Institute of Technology V Senthil, Government College of Engineering G Perumal perumal_harish@yahoo.com
V.R.S College of Engineering and Technology


J. Environ. Nanotechnol., Volume 13, No 4 (2024) pp.

https://doi.org/10.13074/jent.2024.12.2441023

PDF


Abstract

Hybrid ceramic-reinforced nano-aluminum composites are emerging as a superior material for brake discs for use in automobiles because of their remarkable qualities. The inclusion of ceramic particles significantly enhances wear resistance, thermal stability, and mechanical strength, ensuring efficient heat dissipation and reducing the risk of brake fade. In this study, aluminium alloy 7075 (AA7075) is reinforced with equal proportions of nano silicon carbide (nSiC) and zirconium oxide (ZrO2) considered that can reduce vehicle weight, improve fuel efficiency, and extend the brake disc lifespan. The powder metallurgy (PM) method is adopted for creating the composites with 3 wt.% of nSiC and 7.5% ZrO2 with polyvinyl alcohol (PVA) as a binder. The fabricated specimen was subjected to wear studies in pin-on-disc (PoD) apparatus as per ASTM G99 standard. Higher axial load (AL), sliding velocity (SV), and sliding distance (SD) intensify the wear loss (WL) of the hybrid composite. The hybrid composite can sustain more AL and SV than the base alloy due to the reinforced ceramics that form a protective tribo-layer on the composite surface under increased stress and frictional heat. The wear mechanisms observed are abrasive wear, adhesive wear, and oxidative wear.

Full Text

Reference


Akutagawa, K., Ohtsuki, H., Hasegawa, J., and Miyazaki, M., Reduction of the Friction Coefficient of Metal Matrix Composite Under Dry Conditions, SAE Technical Paper 870441, (1987). https://doi.org/10.4271/870441

Ammisetti, D. K., and Kruthiventi, S. S. H., Experimental Investigation of the Influence of Various Wear Parameters on the Tribological Characteristics of AZ91 Hybrid Composites and Their Machine Learning Modeling. J. Tribol., 146(5), (2024). https://doi.org/10.1115/1.4064397

Babu R, R., C, R., A, S., and Velu, R. Influence of B4C and ZrB2 reinforcements on microstructural, mechanical and wear behaviour of AA 2014 aluminium matrix hybrid composites. Def. Technol, (2024). https://doi.org/10.1016/j.dt.2024.05.009

Bharathi, P., and Kumar, T. S. Mechanical Characteristics and Wear Behaviour of Al/SiC and Al/SiC/B4C Hybrid Metal Matrix Composites Fabricated Through Powder Metallurgy Route. Silicon, 15(10), 4259–4275, (2023). https://doi.org/10.1007/s12633-023-02347-0

Biscay, N., Henry, L., Adschiri, T., Yoshimura, M., and Aymonier, C. Behavior of Silicon Carbide Materials under Dry to Hydrothermal Conditions. Nanomater, 11(5), 1351, (2021). https://doi.org/10.3390/nano11051351

Boggarapu, V., Rama Sreekanth, P. S., and Peddakondigalla, V. B., Microstructure, mechanical and tribological properties of Al/Cu functionally graded material fabricated through powder metallurgy, J. Eng. Res., 100119 (2023). https://doi.org/10.1016/j.jer.2023.100119

Bracamonte, L., Withers, J., and Smith, T. Lightweight, Wear Resistant, High Thermal Conductivity Metal Matrix Composite Brake Rotors. SAE International Technical Paper (2018) https://doi.org/10.4271/2018-01-1879

Deepanraj, B., Senthilkumar, N., and Tamizharasan, T., Sintering parameters consequence on microstructure and hardness of copper alloy prepared by powder metallurgy. Mater. Today Proc. 80, 2468–2473. (2023). https://doi.org/10.1016/j.matpr.2021.06.389

Federici, M., Gialanella, S., Leonardi, M., Perricone, G., and Straffelini, G. A preliminary investigation on the use of the pin-on-disc test to simulate off-brake friction and wear characteristics of friction materials. Wear, 410–411, 202–209 (2018). https://doi.org/10.1016/j.wear.2018.07.011

Fedorov, P. P., and Yarotskaya, E. G. Zirconium dioxide. Review. Kondensirovannye Sredy i Mezhfaznye Granitsy = Condensed Matter and Interphases, 23(2), 169–187 (2021). https://doi.org/10.17308/kcmf.2021.23/3427

Ganapathy, P., Manivasagam, G., Rajamanickam, A., and Natarajan, A. Wear studies on plasma-sprayed Al2O3 andandamp;nbsp;8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application. Int J Nanomedicine, 213. (2015). https://doi.org/10.2147/IJN.S79997

Gupta, R., Nanda, T., and Pandey, O. P., Tribological properties of hybrid aluminium matrix composites reinforced with boron carbide and ilmenite particles for brake rotor applications. Arch. Civ. Mech. Eng. 23(1), 47 (2022) https://doi.org/10.1007/s43452-022-00569-4

Gupta, R., Nanda, T., and Pandey, O. P., Tribological characteristics of LM13 alloy based ilmenite-boron carbide reinforced hybrid composites for brake drum applications. Wear, 522, 204851. (2023). https://doi.org/10.1016/j.wear.2023.204851

Ibrahim, T. K., Yawas, D. S., Thaddaeus, J., Danasabe, B., Iliyasu, I., Adebisi, A. A., and Ahmadu, T. O., Development, modelling and optimization of process parameters on the tensile strength of aluminum, reinforced with pumice and carbonated coal hybrid composites for brake disc application. Sci. Rep., 14(1), 16999. (2024). https://doi.org/10.1038/s41598-024-67476-x

K. Ragupathy, C. Velmurugan, and N. Senthilkumar., Tribological and Heat Treatment Prediction of Stir Cast Al 6061/SiC/MoS2 Composites Using Grey Relational Analysis. J. Balkan Tribol. Assoc., 24(2), 198–217, (2018).

Khalid, M. Y., Umer, R., and Khan, K. A., Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. RINENG, 20, 101372 (2023). https://doi.org/10.1016/j.rineng.2023.101372

Khan, F., Hossain, N., Mim, J. J., Rahman, S. M., Iqbal, Md. J., Billah, M., and Chowdhury, M. A. Advances of composite materials in automobile applications – A review. J. Eng. Res. (2024). https://doi.org/10.1016/j.jer.2024.02.017

Kobelev, V. Design and Analysis of Composite Structures for Automotive Applications: Chassis and Drivetrain. Wiley, (2019). https://books.google.co.in/books?id=1iaPDwAAQBAJ

Lattanzi, L., and Awe, S. A., Thermophysical properties of Al-based metal matrix composites suitable for automotive brake discs. JALMES, 5, 100059 (2024). https://doi.org/10.1016/j.jalmes.2024.100059

Mao, L., Cai, M., Liu, Q., and He, Y., Effects of sliding speed on the tribological behavior of AA 7075 petroleum casing in simulated drilling environment, Tribol. Int., 145, 106194 (2020). https://doi.org/10.1016/j.triboint.2020.106194

Meghwal, A., Schulz, C., Hall, C., Vogli, E., Berndt, C. C., and Ang, A. S. M., Microstructural, mechanical and high-temperature tribological performance of Fe-based fully amorphous and amorphous/crystalline coatings, Surf. Coat. Tech., 475, 130114 (2023). https://doi.org/10.1016/j.surfcoat.2023.130114

Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A. and Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A., 280(1), 37–49 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X

Mishra, A. K. and Srivastava, R. K., Wear Behaviour of Al-6061/SiC Metal Matrix Composites. J. IEIC., 98(2), 97–103 (2017). https://doi.org/10.1007/s40032-016-0284-3

Mussatto, A., Ahad, I. U., Mousavian, R. T., Delaure, Y. and Brabazon, D., Advanced production routes for metal matrix composites. Eng. Rep., 3(5) (2021). https://doi.org/10.1002/eng2.12330

Nagaraju, S. B., Somashekara, M. K., Govindaswamy, P. D., Puttegowda, M., Shankar, P. B. G. and Sathyanarayana, K., Wear behaviour of hybrid (boron carbide-graphite) aluminium matrix composites under high temperature, JEAS., 70(1), 124 (2023). https://doi.org/10.1186/s44147-023-00294-6

Oda, N., Sugimoto, Y., Higuchi, T., and Minesita, K. Development of Disk Brake Rotor Utilizing Aluminum Metal Matrix Composite, SAE Technical Paper, 970787 (1997). https://doi.org/10.4271/970787

Pali, H. S., and Dwivedi, S. P. Experimental Investigation of Wear and Frictional Properties of A356/SiC Metal Matrix Composite, SAE Technical Paper, 2017-01-5012 (2017). https://doi.org/10.4271/2017-01-5012

Pillari, L. K., Lessoway, K. and Bichler, L. Reciprocating dry sliding friction and wear behavior of B319 aluminum alloy-graphene composites. Tribol. Int.,, 192, 109334 (2024). https://doi.org/10.1016/j.triboint.2024.109334

Ragupathy, K., Velmurugan, C., Ebenezer Jacob Dhas, D. S., Senthilkumar, N. and Leo Dev Wins, K. Prediction of Dry Sliding Wear Response of AlMg1SiCu/Silicon Carbide/Molybdenum Disulphide Hybrid Composites Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Response Surface Methodology (RSM). AJSE. 46(12), 12045–12063 (2021). https://doi.org/10.1007/s13369-021-05820-3

Rao, R. N. and Das, S., Effect of sliding distance on the wear and friction behavior of as cast and heat-treated Al–SiCp composites. Mater. Des., 32(5), 3051–3058 (2011). https://doi.org/10.1016/j.matdes.2011.01.033

Sabbar, H. M., Leman, Z., Shamsudin, S. B., Tahir, S. M., Aiza Jaafar, C. N., Hanim, M. A. A., Ismsrrubie, Z. N., and Al-Alimi, S., AA7075-ZrO2 Nanocomposites Produced by the Consecutive Solid-State Process: A Review of Characterisation and Potential Applications. Metals, 11(5), 805 (2021). https://doi.org/10.3390/met11050805

Senthil, V., Balasubramanian, E., Raju, G. S., and Senthilkumar, N. Drilling Studies on MWCNT- and Zirconia-Reinforced Aluminium Alloy 8011 Hybrid Composite: A Machine Learning Approach. AJSE, 49(11), 14741–14762 (2024). https://doi.org/10.1007/s13369-024-08792-2

Senthilkumar, N., Perumal, G., Azhagiri, P., and Deepanraj, B. Exploring mechanical, wear, and corrosion characteristics of Al–Si–Mg nano-composites reinforced with nano-silicon dioxide and tungsten carbide. Appl. Nanosci., (2024). https://doi.org/10.1007/s13204-024-03069-4

Singh, P., Singh, R. K., and Das, A. K., Influence of ceramic reinforcements on mechanical properties and high-temperature sliding wear behaviour of heat-treated Al6082–SiC–TiO2 composites developed by stir-casting process, Multiscale Multidiscip. Model. Exp. 7(2), 1339–1356 (2024). https://doi.org/10.1007/s41939-023-00291-5

Srinivasan, D., Senthilkumar, N., Ganesh, M., and Perumal, G. Characterization studies on nano aluminium composite reinforced with montmorillonite nanoclay and titanium carbide, Multiscale Multidiscip. Model. Exp.,7(3), 2839–2859 (2024). https://doi.org/10.1007/s41939-024-00374-x

Sundara Selvan, S., and Senthilkumar, N. Dry sliding wear behaviour of surface modified az61 magnesium alloy reinforced with nano titanium dioxide. J. Balkan Tribol. Assoc., 24(3), 429–452 (2018).

Sundaraselvan, S., Senthilkumar, N., Rajkumar, K., and Madhavi, B. Wear studies on friction stir processed surface modified AZ61 magnesium alloy with nano titanium oxide, Can. Metall. Q. 1–15 (2024). https://doi.org/10.1080/00084433.2024.2419215

Sundaraselvan, S., Senthilkumar, N., Tamizharasan, T., and Sait, A. N. Surface modification of AZ61 Magnesium Alloy with Nano TiO2/Al2O3 using Laser Cladding Technique, Mater. Today Proc., 21, 717–721 (2020). https://doi.org/10.1016/j.matpr.2019.06.745

Tahamtan, S., Emamy, M., and Halvaee, A. Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites, J. Compos. Mater., 48(27), 3331–3346 (2014). https://doi.org/10.1177/0021998313509860

Tan, D., Xia, S., Yob, A., Yang, K., Yan, S., Givord, M., and Liang, D. Evaluation of the wear resistance of aluminium-based hybrid composite brake discs under relevant city rail environments. Mater. Des 215, 110504 (2022). https://doi.org/10.1016/j.matdes.2022.110504

Thirumalvalavan, S., and Senthilkumar, N. Experimental investigation and optimization of hvof spray parameters on wear resistance behaviour of TI-6AL-4V alloy, C. R. Acad. Bulg. Sci., 72(5), 664–673 (2019). https://doi.org/10.7546/CRABS.2019.05.15

Verma, J., Nagdeve, L., and Kumar, H. Tribological investigations into pin-on-disc tribometer under dry sliding conditions at various temperature ranges. Proc. Inst. Mech. Eng., Part E., 236(1), 178–186 (2022). https://doi.org/10.1177/09544089211042954

Wang, Y., and Monetta, T. Systematic study of preparation technology, microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites, J. Mater. Res. Technol. 25, 7470–7497 (2023). https://doi.org/10.1016/j.jmrt.2023.07.145

Yilmaz, E. Ç. Effect of Sliding Movement Mechanism on Contact Wear Behavior of Composite Materials in Simulation of Oral Environment. JBTC., 5(3), 63 (2019). https://doi.org/10.1007/s40735-019-0258-0

Zheng, K. L., Wei, X. S., Yan, B., and Yan, P. F. Ceramic waste SiC particle-reinforced Al matrix composite brake materials with a high friction coefficient. Wear, 458–459, 203424 (2020). https://doi.org/10.1016/j.wear.2020.203424

Contact Us

Powered by

Powered by OJS