Balancing Sustainability and Strength: Analyzing the Effects of Textile, Tannery, and Water Treatment Sludge on Brick Performance
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 311-320
Abstract
This study investigates the feasibility of incorporating various industrial waste materials, specifically textile sludge, tannery sludge, and water treatment plant sludge, in brick production as a sustainable construction practice. The research analyses the impact of varying sludge proportions on the compressive strength of fired clay bricks. Results indicate an inverse relationship between increasing sludge content and compressive strength across all types. Bricks incorporating higher proportions of textile sludge exhibited a linear decrease in compressive strength, ranging from 0.1 MPa to a low of 0.005 MPa. Similarly, increasing the ratio of tannery sludge to fly ash Class C and Ground Granulated Blast-furnace Slag within the brick mixture consistently corresponded with reduced compressive strength, with a 5:70:25 mix yielding 0.8 MPa and a 40:30:30 proportion resulting in 0.17 MPa. Water treatment plant sludge exhibited a similar trend. A mix proportion of 5:70:25 (sludge: fly ash class C: GGBS) yielded a compressive strength of 1.87 MPa while increasing the sludge proportion to 40:50:10 resulted in a lower compressive strength of 1.20 MPa. These findings underscore the importance of a balanced approach when incorporating industrial sledges in brick production. While beneficial from a sustainability perspective, the observed reduction in compressive strength, particularly compared to conventional clay bricks exceeding 2.5 MPa, necessitates careful consideration. Future research should focus on optimizing mix designs, incorporating performance-enhancing additives, or identifying applications where lower compressive strengths are acceptable to fully realize the potential of these waste materials in sustainable construction.
Full Text
Reference
Ahmad, T., Ahmad, K., Alam, M., Sludge quantification at water treatment plant and its management scenario, Environ. Monit. Assess. 189(9), 453 (2017).
https://doi.org/10.1007/s10661-017-6166-1
Ahmadi, M., Hakimi, B., Mazaheri, A., Kioumarsi, M., Potential Use of Water Treatment Sludge as Partial Replacement for Clay in Eco-Friendly Fired Clay Bricks, Sustainability 15(12), 9389 (2023).
https://doi.org/10.3390/su15129389
Al-Numan, B. S. O., Construction Industry Role in Natural Resources Depletion and How to Reduce It, pp 93–109 (2024).
https://doi.org/10.1007/978-3-031-58315-5_6
Andrade, J. J. de O., Possan, E., Wenzel, M. C., Silva, S. R. da, Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach, Sustainability 11(13), 3576 (2019).
https://doi.org/10.3390/su11133576
Arif Kamal, M., Recycling of Fly Ash as an Energy Efficient Building Material: A Sustainable Approach, Key Eng. Mater. 692, 54–65 (2016).
https://doi.org/10.4028/www.scientific.net/KEM.692.54
Balasubramaniam, T., Karthik, P. M. S., Sureshkumar, S., Bharath, M., Arun, M., Effectiveness of industrial waste materials used as ingredients in fly ash brick manufacturing, Mater. Today Proc. 45, 7850–7858 (2021).
https://doi.org/10.1016/j.matpr.2020.12.410
Benachio, G. L. F., do Carmo Duarte Freitas, M., Tavares, S. F., Circular economy in the construction industry: A systematic literature review, J. Clean. Prod. 260, 121046 (2020).
https://doi.org/10.1016/j.jclepro.2020.121046
Bijen, J., Benefits of slag and fly ash, Constr. Build. Mater. 10(5), 309–314 (1996).
https://doi.org/10.1016/0950-0618(95)00014-3
Bilal, M., Khan, K. I. A., Thaheem, M. J., Nasir, A. R., Current state and barriers to the circular economy in the building sector: Towards a mitigation framework, J. Clean. Prod. 276, 123250 (2020).
https://doi.org/10.1016/j.jclepro.2020.123250
Chamasemani, N. F., Kelishadi, M., Mostafaei, H., Najvani, M. A. D., Mashayekhi, M., Environmental Impacts of Reinforced Concrete Buildings: Comparing Common and Sustainable Materials: A Case Study, Constr. Mater. 4(1), 1–15 (2023).
https://doi.org/10.3390/constrmater4010001
Dang, J., Zhao, J., Hu, W., Du, Z., Gao, D., Properties of mortar with waste clay bricks as fine aggregate, Constr. Build. Mater. 166, 898–907 (2018).
https://doi.org/10.1016/j.conbuildmat.2018.01.109
Davydov, S. Y., Apakashev, R. A., Oleynikova, L. N., Use of Water Treatment Sludge in the Production of Building and Ceramic Materials, Refract. Ind. Ceram. 64(2), 109–114 (2023).
https://doi.org/10.1007/s11148-023-00811-3
Ganapathy, G. P., Kaliyappan, S. P., Ramamoorthy, V. L., Shanmugam, S., AlObaid, A., Warad, I., Velusamy, S., Achuthan, A., Sundaram, H., Vinayagam, M., Sivakumar, V., Low alkaline vegetation concrete with silica fume and nano-fly ash composites to improve the planting properties and soil ecology, Nanotechnol Rev., 13(1) (2024). https://doi.org/10.1515/ntrev-2023-0201
Guo, L., Deng, M., Zhang, W., Li, T., Zhang, Y., Cao, M., Hu, X., Flexural behavior of textile reinforced mortar-autoclaved lightweight aerated concrete composite panels, Front. Struct. Civ. Eng. 18(5), 776–787 (2024).
https://doi.org/10.1007/s11709-024-1073-3
Guo, Q., Li, H., Zhang, L., Tian, D., Li, Y., Zhao, J., Zhu, S., Non-Clay Bricks with High Compressive Strength Made from Secondary Aluminum Dross and Waste Glass, SSRN Electron J. (2022).
https://doi.org/10.2139/ssrn.4183152
Hossain, A. B., Fonseka, A., Bullock, H., Early Age Stress Development, Relaxation, and Cracking in Restrained Low W/B Ultrafine Fly Ash Mortars, J. Adv. Concr. Technol. 6(2), 261–271 (2008).
https://doi.org/10.3151/jact.6.261
Jamil, N., Abdullah, M., Ibrahim, W., Rahim, R., Sandu, A., Vizureanu, P., Castro-Gomes, J., Gómez-Soberón, J., Effect of Sintering Parameters on Microstructural Evolution of Low Sintered Geopolymer Based on Kaolin and Ground-Granulated Blast-Furnace Slag, Crystals 12(11), 1553 (2022).
https://doi.org/10.3390/cryst12111553
Jamshaid, H., Shah, A., Shoaib, M., Mishra, R. K., Recycled-Textile-Waste-Based Sustainable Bricks: A Mechanical, Thermal, and Qualitative Life Cycle Overview, Sustainability 16(10), 4036 (2024).
https://doi.org/10.3390/su16104036
John Louis, L., Senthil Kumar, G., Tannery Wastewater Treatment: Trace Organic Pollutants, Toxicity and Innovative Removal Methods, Int. J. Eng. Trends Technol. 72(3), 288–311 (2024).
https://doi.org/10.14445/22315381/IJETT-V72I3P126
Kandpal, V., Jaswal, A., Gonzalez, E. D. R. S., Agarwal, N., Circular Economy Principles: Shifting Towards Sustainable Prosperity, pp 125–165 (2024).
https://doi.org/10.1007/978-3-031-52943-6_4
Keerthana, T., Nirmalkumar, K., Sampathkumar, V., Selvakumar, S., Experimental studies on the behavior of the fiber reinforced concrete blended with admixtures, p 20028 (2024).
https://doi.org/10.1063/5.0195391
Koçyiğit, F., Thermo-physical and Mechanical Properties of Clay Bricks Produced for Energy Saving, Int. J. Thermophys. 43(2), 18 (2022).
https://doi.org/10.1007/s10765-021-02951-5
Meyer, C., The greening of the concrete industry, Cem. Concr. Compos. 31(8), 601–605 (2009).
https://doi.org/10.1016/j.cemconcomp.2008.12.010
Navaneethan, K. S., Manoj, S., Anandakumar, S., Raja, K., Lakshmi, N. J., Sampathkumar, V., Nithya, B., Selvan, V. T., Investigation on Reinforced Concrete Beams with High-Strength FRP Composite, J. Environ. Nanotechnol. 13(2), 208–213 (2024).
https://doi.org/10.13074/jent.2024.06.242560
Rajesh, A., Prasanthni, P., Senthilkumar, S., Priya, B., Environment friendly sustainable concrete produced from marble waste powder, Glob. NEST J. , 1–9 (2024).
https://doi.org/10.30955/gnj.005204
Rajesh, K. N., Raju, P. M., Mishra, K., Madisetti, P. K., A review on sustainable concrete mix proportions, IOP Conf. Ser. Mater. Sci. Eng. 1025(1), 12019 (2021).
https://doi.org/10.1088/1757-899X/1025/1/012019
Sampathkumar, V., Raja, K., Navaneethan, K. S., Lakshmi, N. J., Ambika, D., Manoj, S., Kumar, K. S., Strength Characteristics of Bentonite Nano Clay Stabilized with Addition of Lime, Fly Ash, and Silica Fume for Soil Environmental Sustainability, J. Environ. Nanotechnol. 13(2), 160–167 (2024).
https://doi.org/10.13074/jent.2024.06.242644
Siddiqua, A., Hahladakis, J. N., Al-Attiya, W. A. K. A., An overview of the environmental pollution and health effects associated with waste landfilling and open dumping, Environ. Sci. Pollut. Res. 29(39), 58514–58536 (2022).
https://doi.org/10.1007/s11356-022-21578-z
Srinivasan, K., Vivek, S., Sampathkumar, V., Facilitating Eco-Friendly Construction Practices with the Sustainable Application of Nanomaterials in Concrete Composites, J. Environ. Nanotechnol. 13(2), 201–207 (2024).
https://doi.org/10.13074/jent.2024.06.242556
Sunmathi, N., Padmapriya, R., Sudarsan, J. S., Nithiyanantham, S., Optimum utilization and resource recovery of tannery sludge: a review, Int. J. Environ. Sci. Technol. 20(9), 10405–10414 (2023).
https://doi.org/10.1007/s13762-022-04483-3
Testolin, R. C., Feuzer-Matos, A. J., Cotelle, S., Adani, F., Janke, L., Poyer-Radetski, G., Pereira, A. C., Ariente-Neto, R., Somensi, C. A., Radetski, C. M., Using textile industrial sludge, sewage wastewater, and sewage sludge as inoculum to degrade recalcitrant textile dyes in a co-composting process: an assessment of biodegradation efficiency and compost phytotoxicity, Environ. Sci. Pollut. Res. 28(36), 49642–49650 (2021).
https://doi.org/10.1007/s11356-021-14211-y
Velumani, P., SenthilKumar, S., Premalatha, P. V, An Innovative Approach to Evaluate the Performance of Sludge-Incorporated Fly Ash Bricks, J. Test. Eval. 44(6), 2155–2163 (2016).