Impacts of Zirconium Carbide Incorporated Magnesium Alloy Nanocomposite on Wear Properties
J. Environ. Nanotechnol., Volume 13, No 3 (2024) pp. 217-221
Abstract
In the study, zirconium carbide nanoparticle (ZrC-50 nm) incorporated magnesium alloy (AZ61) nanocomposite was prepared by liquid state stir cast process, and its wear properties were evaluated by different load (U), sliding speed (V), and sliding distance (W). The impacts on wear rate (WR) and coefficient of friction (COF) of AZ61 alloy nanocomposite were studied. With the support of a pin-on-disc wear tester, the dry sliding wear characteristics were measured. Moreover, to find the optimum process parameter on minimum WR and better COF characteristics, the L27 orthogonal array utilized U, V, and W as the input factors, and the WR & COF were treated as output responses. Based on the analysis, load was found to be the most dominant input factor that influences the WR and sliding distance was the factor for fixing the COF.
Full Text
Reference
Aliabadi, M. H., Developments in the Science and Technology of Composite Materials, Eng Anal. Bound. Elem., 7(3), 150 (1990).
https://doi.org/10.1016/0955-7997(90)90047-d
Anjalin, F. M., Krishnan, A. M., Arunkumar, G., Raju, K., Vivekanandan, M., Somasundaram, S., Thirugnanasambandham, T., Ramaraj, E., Inorganic Adsorption on Thermal Response and Wear Properties of Nanosilicon Nitride-Developed AA6061 Alloy Nanocomposite. Ads. Sci. Tech., 2023, 1-8(2023).
https://doi.org/10.1155/2023/8468644
Chandradass, J., Thirugnanasambandham, T., Amutha Surabi, M., Baskara Sethupathi, P. and Rajendran, R., Development of Asbestos Free Aramid Fibre based friction lining Material for Automotive Application, SAE Technical Papers, (2023).
https://doi.org/10.4271/2023-28-0122
Devanathan, C., Dillikannan, D., Akila, P., Kamatchi, R. M., Das, A. D., Karthikeyan, N. and Kaliyaperumal, G., Significance of Hemp Fiber on Mechanical and Thermal Performance of Polypropylene Nanocomposite Developed by Compression Mould Technique, J. Inst. Eng., D (2024).
https://doi.org/10.1007/s40033-024-00687-8
Depoures, M. V., Chakravarthy, K. S., Md, J. S., Siva, P. V., Sreenivasa, R. K., Yarram, S. R., Gopal, K., Venkatesh R. and Gautham, M., Sodium Hydroxide Processed Natural Sisal Fiber Made Polypropylene Composite: Characteristics Evaluation, J. Inst. Eng. (India), D (2024).
https://doi.org/10.1007/s40033-024-00761-1
Dillikannan, D., Ilavarasan, N., Kamatchi, R. M., Das, A. D., Ammaiappan, M., Arunkumar, G. and Kaliyaperumal, G., An Approach of Nano-SiC-Filled Epoxy Nanocomposite Tensile and Flexural Strength Enriched by the Addition of Sisal Fiber, J. Inst. Eng. (India), D (2024).
https://doi.org/10.1007/s40033-024-00680-1
Egbo, M. K., A fundamental review on composite materials and some of their applications in biomedical engineering, J. King Saud Univ. Sci., 33(8), 557-568(2021).
https://doi.org/10.1016/j.jksues.2020.07.007
Harikrishna, K., Bhowmik, A., Davidson, M. J., Kumar, R., Anqi, A. E., Rajhi, A. A. and Alamri, S., Evaluation of constitutive equations for modeling and characterization of microstructure during hot deformation of sintered Al–Zn–Mg alloy, J. Mater. Res. Technol., 28, 1523–1537 (2024).
https://doi.org/10.1016/j.jmrt.2023.12.050
Jayasathyakawin, S. and Ravichandran, M., Fabrication and wear behaviour of Mg-3wt.%Al-x wt. % SiC composites, Heliyon, 9(2), 1-15 (2023).
https://doi.org/10.1016/j.heliyon.2023.e13679
Kumar, M. V., Lakshmanan, S., Kumar, A., Manivannan, S., Chandramohan, P. and Kaliyaperumal, G., Development of Low-Density Polyethylene Nanocomposite with CNT Fibre Via Injection Moulding: Performance Study, J. Inst. Eng. (India), D.(2024).
https://doi.org/10.1007/s40033-024-00674-z
Kumar, T. S., Thankachan, T., Shalini, S., Čep, R. and Kalita, K., Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing, Sci. Rep., 13(1), 20089 (2023).
https://doi.org/10.1038/s41598-023-47381-5
Liu, B., Yang, J., Zhang, X., Yang, Q., Zhang, J. and Li, X, Development and application of magnesium alloy parts for automotive OEMs: A review, J. Magnes. Alloy, 11(1), 15-47 (2023).
https://doi.org/10.1016/j.jma.2022.12.015
Rawal, S., Metal-matrix composites for space applications, JOM, 53(4), 14–17 (2001).
https://doi.org/10.1007/s11837-001-0139-z
Suresh K. S. and Mohanavel, V., An overview assessment on magnesium metal matrix composites, Mater. Today: Proce., 59, 1357–1361 (2022).
https://doi.org/10.1016/j.matpr.2021.12.015
Selvaraj, V. K., Jeyanthi, S., Thiyagarajan, R., Senthil Kumar, M., Yuvaraj, L., Ravindran, P., Niveditha, D. M. and Mebremichael, Y. B., Experimental Analysis and Optimization of Tribological Properties of Self-Lubricating Aluminum Hybrid Nanocomposites Using the Taguchi Approach, Adv. Mater. Sci. Eng., 2023(1), 1-3 (2022).
https://doi.org/10.1155/2022/4511140
Shivalingaiah, K., Nagarajaiah, V., Selvan, C. P., Kariappa, S. T., Chandrashekarappa, N. G., Lakshmikanthan, A., Manjunath, P. G. C. and Linul, E, Stir Casting Process Analysis and Optimization for Better Properties in Al-MWCNT-GR-Based Hybrid Composites, Metals, 12(8), 1-25 (2022).
https://doi.org/10.3390/met12081297
Venkatesh, R., Preparation of High-Density Polypropylene Composite Featured with Natural Neem Fiber Through Injection Mould Route, J. Inst. Eng. (India), D, 1-5 (2024).
https://doi.org/10.1007/s40033-024-00706-8
Wei, T. Z., Shamsuri, S. R. B., Chang, S. Y., Rashid, M. W. A. nd Ahsan, Q., Effect of sliding velocity on wear behavior of magnesium composite reinforced with SiC and MWCNT, Procedia Eng., 68, 703–709(2013).
https://doi.org/10.1016/j.proeng.2013.12.242
Zhang, C., Li, Z., Zhang, J., Tang, H. and Wang, H, Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives, J. Magnes. Alloy, 11(2), 425-461 (2023).