Open Access

Synergistic Effects of Bamboo and Jute Fiber Integration in Geopolymer Composites

P. Gunasekar, konguguna@gmail.com
Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, TN, India
A. Anderson, Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, TN, India S. Saravanakumar, Department of Mechanical Engineering, M.Kumarasamy College of Engineering, Karur, TN, India R. Suresh Kumar, Center for Advanced Materials & Testing, Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, TN, India M. Yuvaperiyasamy, Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, TN, India K. Sabari Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, TN, India


J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 115-126

https://doi.org/10.13074/jent.2024.06.242629

PDF


Abstract

Use natural fiber derived from natural products like fruit leaves, tress constituents, and leftovers can now to create environmentally acceptable materials with excellent mechanical qualities. Geopolymer, on the other hand, behave like materials based on Portland cement in terms of fragility and limited ductility. The assessment of bamboo-reinforcement is the main objective of this work. To investigate the impact of the content of mechanical properties and the type of fiber of resulting composites for geopolymer, varying concentrations of bamboo (ranging from 0.4 to 4.0 wt %) were created. Three-point bending, splitting tensile, and compression testing made up the mechanical characterization process. While one of the mechanical tests bend, ing, which is done by the Point method test, suggested a continuous relation between fiber contented and flexural strength, the outcome of the all-mechanical tests, like tensile and compression tests, demonstrated obtaining the maximum strength of the fiber. Conversely, the compressive, splitting tensile, and flexural strengths of geopolymers with 2% (wt %) bamboo fiber reinforcement increased to 65%, 45%, and 232%, respectively. In all mechanical tests, the inclusion of bamboo fiber at the ideal content causes the samples' failure mode to change from brittle to more ductile.

Full Text

Reference


Alomayri, T., Shaikh, F. U. A., Low, I. M., Characterisation of cotton fibre-reinforced geopolymer composites, Compos. Part B Eng. 50, 1–6 (2013).

https://doi.org/10.1016/J.COMPOSITESB.2013.01.013

Ardanuy, M., Claramunt, J., Toledo Filho, R. D., Cellulosic fiber reinforced cement-based composites: A review of recent research, Constr. Build. Mater. 79, 115–128 (2015).

https://doi.org/10.1016/J.CONBUILDMAT.2015.01.035

Arisoy, B., Wu, H. C., Material characteristics of high performance lightweight concrete reinforced with PVA, Constr. Build. Mater. 22(4), 635–645 (2008).

https://doi.org/10.1016/J.CONBUILDMAT.2006.10.010

Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., Ilkentapar, S., Luga, E., Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration, Constr. Build. Mater. 96, 673–678 (2015).

https://doi.org/10.1016/J.CONBUILDMAT.2015.08.089

Bledzki, A. K., Franciszczak, P., Osman, Z., Elbadawi, M., Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers, Ind. Crops Prod. 70, 91–99 (2015).

https://doi.org/10.1016/J.INDCROP.2015.03.013

Chen, C. H., Chen, C. Y., Lo, Y. W., Mao, C. F., Liao, W. T., Characterization of alkali-treated jute fibers for physical and mechanical properties, J. Appl. Polym. Sci. 80(7), 1013–1020 (2001).

https://doi.org/10.1002/APP.1184

Chen, R., Ahmari, S., Zhang, L., Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer, J. Mater. Sci. 49(6), 2548–2558 (2014).

https://doi.org/10.1007/S10853-013-7950-0/METRICS

Cheng, T. W., Chiu, J. P., Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng. 16(3), 205–210 (2003).

https://doi.org/10.1016/S0892-6875(03)00008-6

Correia, E. A. S., Torres, S. M., de Oliveira Alexandre, M. E., Gomes, K. C., P. Barbosa, N., de Barros, S. R., Mechanical Performance of Natural Fibers Reinforced Geopolymer Composites, Mater. Sci. Forum 758, 139–145 (2013).

https://doi.org/10.4028/www.scientific.net/MSF.758.139

Deepanraj, B., Thirumalvalavan, S., Selvarasu, S., Senthilkumar, N., Shaik, F., Investigation and optimization of wear properties of flax fiber reinforced Delrin polymer composite, Mater Today Proc. (2023).

https://doi.org/10.1016/J.MATPR.2023.03.173

Dhinakarraj, C. K., Senthilkumar, N., Palanikumar, K., Deepanraj, B., Experimental interrogations on morphologies and mechanical delineation of silicon nitride fortified Mg-Al-Zn alloy composites, Mater. Today Commun. 35, 105731 (2023).

https://doi.org/10.1016/J.MTCOMM.2023.105731

Dias, D. P., Thaumaturgo, C., Fracture toughness of geopolymeric concretes reinforced with basalt fibers, Cem. Concr. Compos. 27(1), 49–54 (2005).

https://doi.org/10.1016/J.CEMCONCOMP.2004.02.044

Ghosh, S. K., Ghosh, S. K., Construction and Demolition Waste, Sustain. Solid Waste Manag. , 511–547 (2016).

https://doi.org/10.1061/9780784414101.CH16

Korniejenko, K., Frączek, E., Pytlak, E., Adamski, M., Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers, Procedia Eng. 151, 388–393 (2016).

https://doi.org/10.1016/J.PROENG.2016.07.395

Li, W., Xu, J., Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar, Mater. Sci. Eng. A 513–514(C), 145–153 (2009).

https://doi.org/10.1016/J.MSEA.2009.02.033

Li, Y., Mai, Y. W., Ye, L., Sisal fibre and its composites: a review of recent developments, Compos. Sci. Technol. 60(11), 2037–2055 (2000).

https://doi.org/10.1016/S0266-3538(00)00101-9

Mo, B. H., Zhu, H., Cui, X. M., He, Y., Gong, S. Y., Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Appl. Clay Sci. 99, 144–148 (2014).

https://doi.org/10.1016/J.CLAY.2014.06.024

Natali, A., Manzi, S., Bignozzi, M. C., Novel fiber-reinforced composite materials based on sustainable geopolymer matrix, Procedia Eng. 21, 1124–1131 (2011).

https://doi.org/10.1016/J.PROENG.2011.11.2120

Pacheco-Torgal, F., Castro-Gomes, J. P., Jalali, S., Investigations of tungsten mine waste geopolymeric binder: Strength and microstructure, Constr. Build. Mater. 22(11), 2212–2219 (2008).

https://doi.org/10.1016/J.CONBUILDMAT.2007.08.003

Pacheco-Torgal, F., Jalali, S., Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders, Constr. Build. Mater. 24(1), 56–60 (2010).

https://doi.org/10.1016/J.CONBUILDMAT.2009.08.018

Phologolo, T., Yu, C., Mwasiagi, J. I., Muya, N., Li, Z. F., Production and Characterization of Kenyan Sisal, Asian J. Text. 2(2), 17–25 (2012).

https://doi.org/10.3923/AJT.2012.17.25

Puertas, F., Amat, T., Fernández-Jiménez, A., Vázquez, T., Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres, Cem. Concr. Res. 33(12), 2031–2036 (2003).

https://doi.org/10.1016/S0008-8846(03)00222-9

Ramu, S., Senthilkumar, N., Deepanraj, B., Mechanical characterization of E-glass fiber/aluminium powder filled with and without coconut fiber reinforced epoxy hybrid composite, Mater Today Proc. (2023).

https://doi.org/10.1016/J.MATPR.2023.03.074

Ranjbar, N., Talebian, S., Mehrali, M., Kuenzel, C., Cornelis Metselaar, H. S., Jumaat, M. Z., Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites, Compos. Sci. Technol. 122, 73–81 (2016).

https://doi.org/10.1016/J.COMPSCITECH.2015.11.009

Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., Payá, J., Properties and microstructure of alkali-activated red clay brick waste, Constr. Build. Mater. 43, 98–106 (2013a).

https://doi.org/10.1016/J.CONBUILDMAT.2013.01.031

Reig, L., Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., Payá, J., Alkaline activation of ceramic waste materials, Waste and Biomass Valorization 4(4), 729–736 (2013b).

https://doi.org/10.1007/S12649-013-9197-Z/METRICS

Sá Ribeiro, R. A., Sá Ribeiro, M. G., Sankar, K., Kriven, W. M., Geopolymer-bamboo composite – A novel sustainable construction material, Constr. Build. Mater. 123, 501–507 (2016).

https://doi.org/10.1016/J.CONBUILDMAT.2016.07.037

Silva, F. de A., Filho, R. D. T., Filho, J. de A. M., Fairbairn, E. de M. R., Physical and mechanical properties of durable sisal fiber–cement composites, Constr. Build. Mater. 24(5), 777–785 (2010).

https://doi.org/10.1016/J.CONBUILDMAT.2009.10.030

Silva, G., Castañeda, D., Kim, S., Castañeda, A., Bertolotti, B., Ortega-San-Martin, L., Nakamatsu, J., Aguilar, R., Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes, Constr. Build. Mater. 215, 633–643 (2019).

https://doi.org/10.1016/J.CONBUILDMAT.2019.04.247

Silva, G., Kim, S., Aguilar, R., Nakamatsu, J., Natural fibers as reinforcement additives for geopolymers – A review of potential eco-friendly applications to the construction industry, Sustain. Mater. Technol. 23, e00132 (2020a).

https://doi.org/10.1016/J.SUSMAT.2019.E00132

Silva, G., Kim, S., Bertolotti, B., Nakamatsu, J., Aguilar, R., Optimization of a reinforced geopolymer composite using natural fibers and construction wastes, Constr. Build. Mater. 258, 119697 (2020b).

https://doi.org/10.1016/J.CONBUILDMAT.2020.119697

Sun, P., Wu, H. C., Transition from brittle to ductile behavior of fly ash using PVA fibers, Cem. Concr. Compos. 30(1), 29–36 (2008).

https://doi.org/10.1016/J.CEMCONCOMP.2007.05.008

Thirumalvalavan, S., Senthilkumar, N., Deepanraj, B., Syam Sundar, L., Assessment of mechanical properties of flax fiber reinforced with Delrin polymer composite, Mater Today Proc.

https://doi.org/10.1016/J.MATPR.2023.03.087

Yan, L., Chouw, N., Behavior and analytical modeling of natural flax fibre-reinforced polymer tube confined plain concrete and coir fibre-reinforced concrete, Journal of Composite Materials, 47(17), 2133–2148 (2012).

https://doi.org/10.1177/0021998312454691

Yazici, Ş., Inan, G., Tabak, V., Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC, Constr. Build. Mater. 21(6), 1250–1253 (2007).

https://doi.org/10.1016/J.CONBUILDMAT.2006.05.025

Zhao, Q., Nair, B., Rahimian, T., Balaguru, P., Novel geopolymer based composites with enhanced ductility, J. Mater. Sci. 42(9), 3131–3137 (2007).

https://doi.org/10.1007/S10853-006-0527-4/METRICS

Contact Us

Powered by

Powered by OJS