Nanotechnology approaches for Enhancement in Biohydrogen Production
J. Environ. Nanotechnol., Volume 13, No 2 (2024) pp. 277-293
Abstract
The rapid surge of renewable energy sources has been influenced by the high rate of energy consumption and the low sustainability of traditional energy sources. Being an excellent energy source, hydrogen does not leave any negative carbon footprint as it only produces water during the combustion process. It is carbon neutral which can be produced from a variety of waste feed stocks or biomass, making it the most efficient and environmentally friendly form of energy amid all biofuels. To meet the future hydrogen demand, biological processes like bacterial fermentation, are considered to be environmentally favourable option. Since biomass is abundant, cheap, and biodegradable it is considered profitable for biohydrogen production. Though photo-biological and dark fermentation methods are regarded as successful in generating biohydrogen, their lower yields pose significant challenges for its commercial production. Studies are being conducted to improve efficiency, and here is where nanomaterials come into play by influencing biological processes at the cellular level. They can act as catalysts speeding up the reactions that create hydrogen and making the process more sustainable. Owing to their distinct properties such as stability, crystalline nature, high ratio of surface to volume, adsorption ability, and increased electroconductivity significantly enhance hydrogen generation. In this paper, the applications of nanomaterials such as metals, metal alloys, metal oxides, nanocomposites, and inorganic nanoparticles to improve biohydrogen production have been studied.
Full Text
Reference
Ahmed, S. F., Rafa, N., Mofijur, M., Badruddin, I. A., Inayat, A., Ali, M. S., Farrok, O., Yunus Khan, T. M., Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis, Front Energy Res.
https://doi.org/10.3389/fenrg.2021.753878
Akia, M., Yazdani, F., Motaee, E., Han, D., Arandiyan, H., A review on conversion of biomass to biofuel by nanocatalysts, Biofuel Res. J. 01(01), 16–25 (2014).
https://doi.org/10.18331/BRJ2015.1.1.5
Arya, I., Poona, A., Dikshit, P. K., Pandit, S., Kumar, J., Singh, H. N., Jha, N. K., Rudayni, H. A., Chaudhary, A. A., Kumar, S., Current Trends and Future Prospects of Nanotechnology in Biofuel Production, Catalysts 11(11), 1308 (2021).
https://doi.org/10.3390/catal11111308
Bao, M. D., Su, H. J., Tan, T. W., Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine, Fuel 112, 38–44 (2013).
https://doi.org/10.1016/j.fuel.2013.04.063
Basak, N., Das, D., The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art, World J. Microbiol. Biotechnol. 23(1), 31–42 (2007).
https://doi.org/10.1007/s11274-006-9190-9
Basumatary, B., Basumatary, R., Ramchiary, A., Konwar, D., Evaluation of Ag@TiO2/WO3 heterojunction photocatalyst for enhanced photocatalytic activity towards methylene blue degradation, Chemosphere 286, 131848 (2022).
https://doi.org/10.1016/j.chemosphere.2021.131848
Beckers, L., Hiligsmann, S., Lambert, S. D., Heinrichs, B., Thonart, P., Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum, Bioresour. Technol. 133, 109–117 (2013).
https://doi.org/10.1016/j.biortech.2012.12.168
Bolatkhan, K., Kossalbayev, B. D., Zayadan, B. K., Tomo, T., Veziroglu, T. N., Allakhverdiev, S. I., Hydrogen production from phototrophic microorganisms: Reality and perspectives, Int. J. Hydrogen Energy 44(12), 5799–5811 (2019).
https://doi.org/10.1016/j.ijhydene.2019.01.092
Bunker, C. E., Smith, M. J., Nanoparticles for hydrogen generation, J. Mater. Chem. 21(33), 12173 (2011).
https://doi.org/10.1039/c1jm10856e
Chen, J., Li, K., Chen, L., Liu, R., Huang, X., Ye, D., Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks, Green Chem. 16(5), 2490–2499 (2014).
https://doi.org/10.1039/C3GC42414F
Cheng, J., Li, H., Ding, L., Zhou, J., Song, W., Li, Y.-Y., Lin, R., Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism, Chem. Eng. J. 397, 125394 (2020).
https://doi.org/10.1016/j.cej.2020.125394
Chung, W.-T., Mekhemer, I. M. A., Mohamed, M. G., Elewa, A. M., EL-Mahdy, A. F. M., Chou, H.-H., Kuo, S.-W., Wu, K. C.-W., Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production, Coord. Chem. Rev. 483, 215066 (2023).
https://doi.org/10.1016/j.ccr.2023.215066
Corneli, E., Dragoni, F., Adessi, A., De Philippis, R., Bonari, E., Ragaglini, G., Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion, Bioresour. Technol. 211, 509–518 (2016).
https://doi.org/10.1016/j.biortech.2016.03.134
da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., da Silva César, A., Hydrogen: Trends, production and characterization of the main process worldwide, Int. J. Hydrogen Energy 42(4), 2018–2033 (2017).
https://doi.org/10.1016/j.ijhydene.2016.08.219
Das, D., Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26(1), 13–28 (2001).
https://doi.org/10.1016/S0360-3199(00)00058-6
Dincer, I., Acar, C., Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40(34), 11094–11111 (2015).
https://doi.org/10.1016/j.ijhydene.2014.12.035
Dudek, M., Dębowski, M., Zieliński, M., Nowicka, A., Rusanowska, P., Water from the Vistula Lagoon as a medium in mixotrophic growth and hydrogen production by Platymonas subcordiformis, Int. J. Hydrogen Energy 43(20), 9529–9534 (2018).
https://doi.org/10.1016/j.ijhydene.2018.04.039
Elreedy, A., Fujii, M., Koyama, M., Nakasaki, K., Tawfik, A., Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles, Water Res. 151, 349–361 (2019).
https://doi.org/10.1016/j.watres.2018.12.043
Engliman, N. S., Abdul, P. M., Wu, S.-Y., Jahim, J. M., Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation, Int. J. Hydrogen Energy 42(45), 27482–27493 (2017).
https://doi.org/10.1016/j.ijhydene.2017.05.224
Ergal, İ., Fuchs, W., Hasibar, B., Thallinger, B., Bochmann, G., Rittmann, S. K.-M. R., The physiology and biotechnology of dark fermentative biohydrogen production, Biotechnol. Adv. 36(8), 2165–2186 (2018).
https://doi.org/10.1016/j.biotechadv.2018.10.005
Fadakar, A., Mardanpour, M. M., Yaghmaei, S., The coupled microfluidic microbial electrochemical cell as a self-powered biohydrogen generator, J. Power Sources 451, 227817 (2020).
https://doi.org/10.1016/j.jpowsour.2020.227817
Fani, M., Haddadzadeh Niri, M., Joda, F., A Simplified Dynamic Thermokinetic-Based Model of Wood Gasification Process, Process Integr. Optim. Sustain. 2(3), 269–279 (2018).
https://doi.org/10.1007/s41660-018-0042-5
Feng, S., Hao Ngo, H., Guo, W., Woong Chang, S., Duc Nguyen, D., Thanh Bui, X., Zhang, X., Ma, X. Y., Ngoc Hoang, B., Biohydrogen production, storage, and delivery: A comprehensive overview of current strategies and limitations, Chem. Eng. J. 471, 144669 (2023).
https://doi.org/10.1016/j.cej.2023.144669
Gadhe, A., Sonawane, S. S., Varma, M. N., Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater, Int. J. Hydrogen Energy 40(13), 4502–4511 (2015).
https://doi.org/10.1016/j.ijhydene.2015.02.046
Ghosh, P., Deepshikha, K., Kumar, R. R., Chaturvedi, V., Verma, P., Recent advances of nanotechnology in ameliorating bioenergy production: A comprehensive review, Sustain. Chem. Pharm. 37, 101392 (2024).
https://doi.org/10.1016/j.scp.2023.101392
Giannelli, L., Torzillo, G., Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension, Int. J. Hydrogen Energy 37(22), 16951–16961 (2012).
https://doi.org/10.1016/j.ijhydene.2012.08.103
Hallenbeck, P. C., Fundamentals of the fermentative production of hydrogen, Water Sci. Technol. 52(1–2), 21–29 (2005).
https://doi.org/10.2166/wst.2005.0494
Hamawand, I., Seneweera, S., Kumarasinghe, P., Bundschuh, J., Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: A short review, Nano-Structures & Nano-Objects 24, 100601 (2020).
https://doi.org/10.1016/j.nanoso.2020.100601
Han, W., Ye, M., Zhu, A. J., Zhao, H. T., Li, Y. F., Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production, Bioresour. Technol. 191, 24–29 (2015).
https://doi.org/10.1016/j.biortech.2015.04.120
Heidrich, E. S., Dolfing, J., Scott, K., Edwards, S. R., Jones, C., Curtis, T. P., Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell, Appl. Microbiol. Biotechnol. 97(15), 6979–6989 (2013).
https://doi.org/10.1007/s00253-012-4456-7
Iqbal, P., Preece, J. A., Mendes, P. M., Nanotechnology: The “Top‐Down” and “Bottom‐Up” Approaches, Supramol Chem.
https://doi.org/10.1002/9780470661345.smc195
Iravani, S., Green synthesis of metal nanoparticles using plants, Green Chem. 13(10), 2638 (2011).
https://doi.org/10.1039/c1gc15386b
Jafari, O., Zilouei, H., Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment, Bioresour. Technol. 214, 670–678 (2016).
https://doi.org/10.1016/j.biortech.2016.05.007
Javed, M. A., Zafar, A. M., Aly Hassan, A., Zaidi, A. A., Farooq, M., El Badawy, A., Lundquist, T., Mohamed, M. M. A., Al-Zuhair, S., The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis, J. Environ. Chem. Eng. 10(1), 107003 (2022).
https://doi.org/10.1016/j.jece.2021.107003
Jiang, D., Zhang, X., Ge, X., Yue, T., Zhang, T., Zhang, Y., Zhang, Z., He, C., Lu, C., Zhang, Q., Insights into correlation between hydrogen yield improvement and glycerol addition in photo-fermentation of Arundo donax L., Bioresour. Technol. 321, 124467 (2021).
https://doi.org/10.1016/j.biortech.2020.124467
Jing, Y., Li, F., Li, Y., Jiang, D., Lu, C., Zhang, Z., Zhang, Q., Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid–solid ratio, Bioresour. Technol. 349, 126867 (2022).
https://doi.org/10.1016/j.biortech.2022.126867
Kadier, A., Kalil, M. S., Chandrasekhar, K., Mohanakrishna, G., Saratale, G. D., Saratale, R. G., Kumar, G., Pugazhendhi, A., Sivagurunathan, P., Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens, Bioelectrochemistry 119, 211–219 (2018).
https://doi.org/10.1016/j.bioelechem.2017.09.014
Kamath, V., Chandra, P., Jeppu, G. P., Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water, Int. J. Phytoremediation 22(12), 1278–1294 (2020).
https://doi.org/10.1080/15226514.2020.1765139
Karthikeyan, B., Velvizhi, G., A state-of-the-art on the application of nanotechnology for enhanced biohydrogen production, Int. J. Hydrogen Energy 52, 536–554 (2024).
https://doi.org/10.1016/j.ijhydene.2023.04.237
Keçebaş, A., Kayfeci, M., Bayat, M., Electrochemical hydrogen generation, Sol. Hydrog. Prod. , 299–317 (2019).
https://doi.org/10.1016/B978-0-12-814853-2.00009-6
Khamtib, S., Reungsang, A., Biohydrogen production from xylose by Thermoanaerobacterium thermosaccharolyticum KKU19 isolated from hot spring sediment, Int. J. Hydrogen Energy 37(17), 12219–12228 (2012).
https://doi.org/10.1016/j.ijhydene.2012.06.038
Kim, D.-H., Kim, M.-S., Hydrogenases for biological hydrogen production, Bioresour. Technol. 102(18), 8423–8431 (2011).
https://doi.org/10.1016/j.biortech.2011.02.113
Ladole, M. R., Mevada, J. S., Pandit, A. B., Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles, Bioresour. Technol. 239, 117–126 (2017).
https://doi.org/10.1016/j.biortech.2017.04.096
Li, W., Zhang, J., Yang, J., Zhang, J., Li, Z., Yang, Y., Zang, L., Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production, Bioresour. Technol. 343, 126078 (2022).
https://doi.org/10.1016/j.biortech.2021.126078
Lin, H.-N., Hu, B.-B., Zhu, M.-J., Enhanced hydrogen production and sugar accumulation from spent mushroom compost by Clostridium thermocellum supplemented with PEG8000 and JFC-E, Int. J. Hydrogen Energy 41(4), 2383–2390 (2016).
https://doi.org/10.1016/j.ijhydene.2015.11.078
Lin, L., Han, X., Han, B., Yang, S., Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism, Chem. Soc. Rev. 50(20), 11270–11292 (2021).
https://doi.org/10.1039/D1CS00039J
Liu, L., Fang, H., Wei, Q., Ren, X., Extraction performance evaluation of amide-based deep eutectic solvents for carboxylic acid: Molecular dynamics simulations and a mini-pilot study, Sep. Purif. Technol. 304, 122360 (2023).
https://doi.org/10.1016/j.seppur.2022.122360
Liu, X., He, D., Wu, Y., Xu, Q., Wang, D., Yang, Q., Liu, Y., Ni, B.-J., Wang, Q., Li, X., Freezing in the presence of nitrite pretreatment enhances hydrogen production from dark fermentation of waste activated sludge, J. Clean. Prod. 248, 119305 (2020).
https://doi.org/10.1016/j.jclepro.2019.119305
Liu, Y., Liu, J., He, H., Yang, S., Wang, Y., Hu, J., Jin, H., Cui, T., Yang, G., Sun, Y., A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method, Energies 14(18), 5916 (2021).
https://doi.org/10.3390/en14185916
Markandan, K., Chai, W. S., Perspectives on Nanomaterials and Nanotechnology for Sustainable Bioenergy Generation, Materials (Basel). 15(21), 7769 (2022).
https://doi.org/10.3390/ma15217769
Martinez-Burgos, W. J., do Nascimento Junior, J. R., Medeiros, A. B. P., Herrmann, L. W., Sydney, E. B., Soccol, C. R., Biohydrogen Production from Agro-industrial Wastes Using Clostridium beijerinckii and Isolated Bacteria as Inoculum, BioEnergy Res. 15(2), 987–997 (2022).
https://doi.org/10.1007/s12155-021-10358-1
Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., Singh, L., Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach, Int. J. Hydrogen Energy 43(5), 2666–2676 (2018).
https://doi.org/10.1016/j.ijhydene.2017.12.108
Mohan, S., Mohankrishna, G., Reddy, S., Raju, B., Rao, K., Sarma, P., Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production, Int. J. Hydrogen Energy 33(21), 6133–6142 (2008).
https://doi.org/10.1016/j.ijhydene.2008.07.096
Mohanraj, S., Anbalagan, K., Rajaguru, P., Pugalenthi, V., Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum, Int. J. Hydrogen Energy 41(25), 10639–10645 (2016).
https://doi.org/10.1016/j.ijhydene.2016.04.197
Mousavi, M. R., Ghasemi, S., Sanaee, Z., Nejad, Z. G., Mardanpour, M. M., Yaghmaei, S., Ghorbanzadeh, M., Improvement of the microfluidic microbial fuel cell using a nickel nanostructured electrode and microchannel modifications, J. Power Sources 437, 226891 (2019).
https://doi.org/10.1016/j.jpowsour.2019.226891
Nagarajan, D., Lee, D.-J., Kondo, A., Chang, J.-S., Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation, Bioresour. Technol. 227, 373–387 (2017).
https://doi.org/10.1016/j.biortech.2016.12.104
Nikolaidis, P., Poullikkas, A., A comparative overview of hydrogen production processes, Renew. Sustain. Energy Rev. 67, 597–611 (2017).
https://doi.org/10.1016/j.rser.2016.09.044
Oey, M., Sawyer, A. L., Ross, I. L., Hankamer, B., Challenges and opportunities for hydrogen production from microalgae, Plant Biotechnol. J. 14(7), 1487–1499 (2016).
https://doi.org/10.1111/pbi.12516
Pandey, A., Gupta, K., Pandey, A., Effect of nanosized TiO2 on photofermentation by Rhodobacter sphaeroides NMBL-02, Biomass and Bioenergy 72, 273–279 (2015).
https://doi.org/10.1016/j.biombioe.2014.10.021
Patel, S. K. S., Lee, J.-K., Kalia, V. C., Nanoparticles in Biological Hydrogen Production: An Overview, Indian J. Microbiol. 58(1), 8–18 (2018).
https://doi.org/10.1007/s12088-017-0678-9
Plangklang, P., Reungsang, A., Pattra, S., Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse, Int. J. Hydrogen Energy 37(20), 15525–15532 (2012).
https://doi.org/10.1016/j.ijhydene.2012.02.186
Poleto, L., Souza, P., Magrini, F. E., Beal, L. L., Rodrigues Torres, A. P., Paula de Sousa, M., Laurino, J. P., Paesi, S., Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol, Int. J. Hydrogen Energy 41(7), 4374–4381 (2016).
https://doi.org/10.1016/j.ijhydene.2015.06.051
Policastro, G., Luongo, V., Frunzo, L., Fabbricino, M., A comprehensive review of mathematical models of photo fermentation, Crit. Rev. Biotechnol. 41(4), 628–648 (2021).
https://doi.org/10.1080/07388551.2021.1873241
Pugazhendhi, A., Shobana, S., Nguyen, D. D., Banu, J. R., Sivagurunathan, P., Chang, S. W., Ponnusamy, V. K., Kumar, G., Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production, Int. J. Hydrogen Energy 44(3), 1431–1440 (2019).
https://doi.org/10.1016/j.ijhydene.2018.11.114
Ramprakash, B., Muthukumar, K., Influence of sulfuric acid concentration on biohydrogen production from rice mill wastewater using pure and coculture of Enterobacter aerogenes and Citrobacter freundii, Int. J. Hydrogen Energy 43(19), 9254–9258 (2018).
https://doi.org/10.1016/j.ijhydene.2018.03.198
Rashid, N., Lee, K., Mahmood, Q., Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods, Bioresour. Technol. 102(2), 2101–2104 (2011).
https://doi.org/10.1016/j.biortech.2010.08.032
Salame, P. H., Pawade, V. B., Bhanvase, B. A., Characterization Tools and Techniques for Nanomaterials, Nanomater. Green Energy , 83–111 (2018).
https://doi.org/10.1016/B978-0-12-813731-4.00003-5
Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., Monlau, F., Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review, Renew. Sustain. Energy Rev. 44, 20–36 (2015).
https://doi.org/10.1016/j.rser.2014.12.013
Sanusi, I. A., Suinyuy, T. N., Kana, G. E. B., Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile, Biotechnol. Reports 29, e00585 (2021).
https://doi.org/10.1016/j.btre.2021.e00585
Sarangi, P. K., Nanda, S., Biohydrogen Production Through Dark Fermentation, Chem. Eng. Technol. 43(4), 601–612 (2020).
https://doi.org/10.1002/ceat.201900452
Saravanan, A., Kumar, P. S., Mat Aron, N. S., Jeevanantham, S., Karishma, S., Yaashikaa, P. R., Chew, K. W., Show, P. L., A review on bioconversion processes for hydrogen production from agro-industrial residues, Int. J. Hydrogen Energy 47(88), 37302–37320 (2022).
https://doi.org/10.1016/j.ijhydene.2021.08.055
Sekoai, P. T., Ouma, C. N. M., du Preez, S. P., Modisha, P., Engelbrecht, N., Bessarabov, D. G., Ghimire, A., Application of nanoparticles in biofuels: An overview, Fuel 237, 380–397 (2019).
https://doi.org/10.1016/j.fuel.2018.10.030
Senthil Rathi, B., Senthil Kumar, P., Rangasamy, G., Rajendran, S., A critical review on Biohydrogen generation from biomass, Int. J. Hydrogen Energy 52, 115–138 (2024).
https://doi.org/10.1016/j.ijhydene.2022.10.182
Singh, N., Sarma, S., Biological routes of hydrogen production: a critical assessment, Handb. Biofuels , 419–434 (2022).
https://doi.org/10.1016/B978-0-12-822810-4.00021-X
Srivastava, N., Srivastava, M., Manikanta, A., Singh, P., Ramteke, P. W., Mishra, P. K., Nanomaterials for biofuel production using lignocellulosic waste, Environ. Chem. Lett. 15(2), 179–184 (2017).
https://doi.org/10.1007/s10311-017-0622-6
Srivastava, R. K., Shetti, N. P., Reddy, K. R., Aminabhavi, T. M., Biofuels, biodiesel and biohydrogen production using bioprocesses. A review, Environ. Chem. Lett. 18(4), 1049–1072 (2020).
https://doi.org/10.1007/s10311-020-00999-7
Tang, G.-L., Huang, J., Sun, Z.-J., Tang, Q.-Q., Yan, C.-H., Liu, G.-Q., Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: Influence of fermentation temperature and pH, J. Biosci. Bioeng. 106(1), 80–87 (2008).
https://doi.org/10.1263/jbb.106.80
Vaghari, H., Jafarizadeh-Malmiri, H., Mohammadlou, M., Berenjian, A., Anarjan, N., Jafari, N., Nasiri, S., Application of magnetic nanoparticles in smart enzyme immobilization, Biotechnol. Lett. 38(2), 223–233 (2016).
https://doi.org/10.1007/s10529-015-1977-z
Varanasi, J. L., Veerubhotla, R., Pandit, S., Das, D., Biohydrogen Production Using Microbial Electrolysis Cell, In: Microbial Electrochemical Technology. Elsevier, pp 843–869
https://doi.org/10.1016/B978-0-444-64052-9.00035-2
Venkata Mohan, S., Lalit Babu, V., Srikanth, S., Sarma, P. N., Bio-electrochemical evaluation of fermentative hydrogen production process with the function of feeding pH, Int. J. Hydrogen Energy 33(17), 4533–4546 (2008).
https://doi.org/10.1016/j.ijhydene.2008.05.073
Wang, S., Ma, Z., Zhang, T., Bao, M., Su, H., Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch, Front. Chem. Sci. Eng. 11(1), 100–106 (2017).
https://doi.org/10.1007/s11705-017-1617-3
Wang, Y., Xia, Y., Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals, Nano Lett. 4(10), 2047–2050 (2004).
https://doi.org/10.1021/nl048689j
Wimonsong, P., Nitisoravut, R., Comparison of Different Catalysts for Fermentative Hydrogen Production, J. Clean Energy Technol. 3(2), 128–131 (2015).
https://doi.org/10.7763/JOCET.2015.V3.181
Xiang, W., Zhang, Y., Lin, H., Liu, C., Nanoparticle/Metal–Organic Framework Composites for Catalytic Applications: Current Status and Perspective, Molecules 22(12), 2103 (2017).
https://doi.org/10.3390/molecules22122103
Yang, G., Wang, J., Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles, Bioresour. Technol. 266, 413–420 (2018).
https://doi.org/10.1016/j.biortech.2018.07.004
Yazdani, M., Ebrahimi-Nik, M., Heidari, A., Abbaspour-Fard, M. H., Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge, Renew. Energy 135, 496–501 (2019).
https://doi.org/10.1016/j.renene.2018.12.019
Yildirim, O., Ozkaya, B., Enhancing fermentation yield for biohydrogen production using eco-friendly nickel and cobalt ferrite nanoparticles, Biomass Convers Biorefinery.
https://doi.org/10.1007/s13399-024-05354-2
Zhang, J., Fan, C., Zhang, H., Wang, Z., Zhang, J., Song, M., Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose, Int. J. Hydrogen Energy 43(18), 8729–8738 (2018).
https://doi.org/10.1016/j.ijhydene.2018.03.143
Zhang, Y., Shen, J., Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater, Int. J. Hydrogen Energy 32(1), 17–23 (2007).
https://doi.org/10.1016/j.ijhydene.2006.06.004
Zhao, W., Zhang, Y., Du, B., Wei, D., Wei, Q., Zhao, Y., Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria, Bioresour. Technol. 142, 240–245 (2013).
https://doi.org/10.1016/j.biortech.2013.05.042
Zhao, Y., Chen, Y., Nano-TiO 2 Enhanced Photofermentative Hydrogen Produced from the Dark Fermentation Liquid of Waste Activated Sludge, Environ. Sci. Technol. 45(19), 8589–8595 (2011).