Air Quality Prediction in Smart Environment using Lightweight Residual Network: Sustainable Light-AirNet Approach
J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 125-132
Abstract
In densely populated places, air pollution prediction is crucial since it directly affects human health and the local governance. The main objective of this work is to analyze the spatial and temporal patterns of the concentration of the main air pollutants in Bangalore, India. In this paper, a lightweight residual network with an attention mechanism is created using a collection of residual concatenation blocks layered with recursive residual blocks. This aids in the adaptive extraction of useful features, the learning of more expressive spatial context information, and the efficient transfer of information through gradient flow in the network. A unique attention mechanism, known as the Two-Fold Attention Module, has been created with the purpose of enhancing the model’s ability to represent information. The Light-AirNet model was designed to provide hourly forecasts by using past pollution data and three measured weather variables were collected from weather stations. Light-AirNet is compared with existing approaches in terms of different metrics and it was found that it achieves 24.5% of root-mean-square error, 21.5% of mean square error, 12.59% of mean absolute error, and 97.45% of prediction accuracy.
Full Text
Reference
Ailshire, J. A., Crimmins, E. M., Fine particulate matter air pollution and cognitive function among older US adults, Am. J. Epidemiol., 180(4), 359–66 (2014).
https://doi.org/10.1093/aje/kwu155
Bartholomew, D. J., Time series analysis forecasting and control, J. Oper. Res. Soc., 22(2), 199–201 (2017).
https://doi.org/10.1057/jors.1971.52
Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M. and Ren, H., Global pm2.5-attributable health burden from,. to 2017: estimates from the global burden of disease study 2017, Environ Res., 197, 1-9 (2021).
https://doi.org/10.1016/j.envres.2021.111123
Danesh, Y. M., Kuang, Z., Dimakopoulou, K., Barratt, B., Suel, E., Amini, H., Lyapustin, A., Katsouyanni, K., Schwartz, J., Predicting fne particulate matter (pm2. 5) in the greater London area: an ensemble approach using machine learning methods, Remote Sens., 12(6), 1-18 (2020).
https://doi.org/10.3390/rs12060914
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., Straif, K., Shaddick, G., Thomas, M., Dingenen, R., Donkelaar, A., Vos, T., Murray, C. J. L., Forouzanfar, M. H., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015, Lancet.,389(10082), 1907–1918 (2017).
https://doi.org/10.1016%2FS0140-6736(17)30505-6
Du. Y., Xu, X., Chu, M., Guo, Y. and Wang, J., Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence, J. Thoracic. Dis., 8(1), E8-E19 (2016).
https://doi.org/10.3978/j.issn.2072-1439.2015.11.37
Gilik, A., Ogrenci, A. S. and Ozmen, A., Air quality prediction using CNN+ LSTM-based hybrid deep learning architecture, Environ. Sci. Pollut. Res., 29(8), 11920-11938 (2022).
https://doi.org/10.1007/s11356-021-16227-w
Jin, X. B., Wang, Z. Y., Kong, J. L., Bai, Y. T., Su, T. L., Ma, H. J. and Chakrabarti, P., Deep spatio-temporal graph network with self-optimization for air quality prediction. Entropy, 25(2), 1-15 (2023).
https://doi.org/10.3390/e25020247
Kumar, U. and Jain, V., Arima forecasting of ambient air pollutants (O3, NO, NO2 and CO), Stochastic Environ. Res. Risk Assess., 24(5), 751–60 (2010).
https://doi.org/10.1007/s00477-009-0361-8
Lin, K. P., Pai, P. F. and Yang, S. L., Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms, Appl. Math. Comput., 217(12), 5318–5327 (2011).
http://dx.doi.org/10.1016/j.amc.2010.11.055
Lu, D., Mao, W., Xiao, W., Zhang, L., Non-linear response of pm2.5 pollution to land use change in China, Remote Sens., 13(9), 1-13 (2021).
https://doi.org/10.3390/rs13091612
Mishra, D. and Goyal, P., Neuro-fuzzy approach to forecasting ozone episodes over the urban area of Delhi, India, Environ Technol Innov., 5, 83–94 (2016).
https://doi.org/10.1016/j.eti.2016.01.001
Oliveira, S. V., Costa, R. P. A., Scott, J., Van, G. Thé, J. and Gharabaghi, B., Spatiotemporal air pollution forecasting in houston-TX: a case study for ozone using deep graph neural networks, Atmos., 14(2), 1-23 (2023).
https://doi.org/10.3390/atmos14020308
Pöschl, U., Atmospheric aerosols: composition, transformation, climate and health effects, Angew. Chem. Int. Ed., 44(46), 7520-7540 (2005).
https://doi.org/10.1002/anie.200501122
Sonawani, S. and Patil, K., Air quality measurement, prediction and warning using transfer learning based IOT system for ambient assisted living, Int. J. Pervasive Comput. Commun., 20(1), 38-55 (2024).
https://doi.org/10.1108/IJPCC-07-2022-0271
Wang, P., Liu, Y., Qin, Z., Zhang, G., A novel hybrid forecasting model for pm10 and so2 daily concentrations, Sci. Tot. Environ., 505,1202–1212 (2015).
https://doi.org/10.1016/j.scitotenv.2014.10.078
Waseem, K. H., Mushtaq, H., Abid, F., Abu-Mahfouz, A. M., Shaikh, A., Turan, M. and Rasheed, J., Forecasting of air quality using an optimized recurrent neural network, Processes, 10(10), 1-20 (2022).
https://doi.org/10.3390/pr10102117
Yu, R., Yang, Y., Yang, L., Han, G. and Move, O. A., RAQ-A random forest approach for predicting air quality in urban sensing systems, Sensors, 16(1), 1-18 (2016).
https://doi.org/10.3390/s16010086
Zaidan, M. A., Dada, L., Alghamdi, M. A., Al-Jeelani, H., Lihavainen, H., Hyvärinen, A. and Hussein, T., Mutual information input selector and probabilistic machine learning utilisation for air pollution proxies, Appl. Sci., 9(20), 1-20 (2019).