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ABSTRACT 

In densely populated places, air pollution prediction is crucial since it directly affects human health and the local 

governance. The main objective of this work is to analyze the spatial and temporal patterns of the concentration of the main 

air pollutants in Bangalore, India. In this paper, a lightweight residual network with an attention mechanism is created using 

a collection of residual concatenation blocks layered with recursive residual blocks. This aids in the adaptive extraction of 

useful features, the learning of more expressive spatial context information, and the efficient transfer of 

information through gradient flow in the network. A unique attention mechanism, known as the Two-Fold Attention Module, 

has been created with the purpose of enhancing the model’s ability to represent information. The Light-AirNet model was 

designed to provide hourly forecasts by using past pollution data and three measured weather variables were collected from 

weather stations. Light-AirNet is compared with existing approaches in terms of different metrics and it was found that it 

achieves 24.5% of root-mean-square error, 21.5% of mean square error, 12.59% of mean absolute error, and 97.45% of 

prediction accuracy. 

Keywords: Air pollution; Smart environment; Residual network; Spatio-temporal; MSE; MAE; RMSE.  
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1. INTRODUCTION 

People are relocating to cities at an increasing 

rate, as seen by the rise in the global urban population 

proportion. The United Nations predicts that 56.15% of 

the global population will live in urban areas by the year 

2025. Then, by 2050, 68% of people on Earth are 

predicted to reside in urban areas. The issues with air 

pollution, health care, and logistics are all exacerbated by 

the expansion of industry and urbanization. Smart cities 

were developed by combining fixed and mobile sensors 

with information and communication technology to solve 

these issues and improve the quality of life of inhabitants. 

The sensors are positioned across the city to monitor 

actual human behavior. This idea has developed into a 

limitless supply of metropolitan data. The regular haze 

caused by the expansion of industry has resulted in a 

rapid increase in environmental pollution during the last 

several decades. Nearly 90% of people breathe air that is 

polluted and exceeds WHO guidelines for air quality, 

which can lead to respiratory issues (Ailshire et al. 2014; 

Pöschl et al. 2005). Exposure to PM2.5, even for short 

periods ranging from hours to weeks, may increase the 

probability of cardiovascular disease-related events and 

fatalities (Du et al. 2016). According to the Global 

Burden of Diseases (Cohen et al. 2017; Bu et al. 2021), 

115.1 million disability-adjusted life years (DALYs) and 

4.2 million deaths were attributed  to PM2.5 exposure in 

2015. These figures rose to 142.52 million DALYs and 

4.58 million deaths in 2017. In addition to endangering 

people’s health and lives, this poor air quality also poses 

a threat to the economy. Air pollution may be to blame 

for 1% of the world’s GDP, according to data provided 

by the Organization for Economic Cooperation and 

Development. For public health and political decision-

making, an efficient system for tracking and monitoring 

air pollution is essential. However, the mechanism and 

process of PM2.5 formation are very intricate due to the 

complexity of its features, including its non-linear 

qualities in time and space (Lu et al. 2021), which has a 

high impact on accuracy and requires special monitoring 

as a consequence. Air quality forecasting has been widely 

addressed using conventional statistical methods. The 

fundamental premise of these approaches is drawing 

conclusions from past data. The two popular statistical 

approaches used to predict air quality are ARIMA 
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(Autoregressive Integrated Moving Average) (Kumar 

and Jain, 2010) and ARMA (Autoregressive Moving 

Average) (Bartholomew et al. 2017). However, when the 

amount of data and complexity increases, these methods 

become less effective due to the length of training 

process. Machine learning (ML)-based prediction 

approaches are growing in popularity as big data and AI 

continue to progress. For using these models, a person 

does not need understanding of the physical or chemical 

properties of air pollutants. The most popular ML 

algorithms are Multiple Linear Regression (MLR), 

Random Forest (RF) (Yu et al. 2016), Support Vector 

Regression (SVR) (Lin et al. 2011), and Artificial Neural 

Networks (ANN) (Wang et al. 2015). These algorithms 

incorporate complex nonlinear relationships among the 

concentration of air pollutants and weather variables. The 

Greater London area’s pollution levels have been reliably 

and accurately measured with an ensemble technique that 

included numerous ML algorithms (Danesh et al. 2020). 

In order to forecast air pollution across various research 

regions, many ANN structures have been created, 

including the neuro-fuzzy NN (Mishra and Goyal, 2016) 

and the Bayesian neural network (Zaidan et al. 2019).  

Given this background, the contributions of this work are 

as follows: 

An effective recursive residual block is 

proposed with a multi-path residual learning approach to 

improve performance at a minimal computational 

expense by paying careful attention to spatial-temporal 

information. 

An adaptive rescaling of feature maps is 

suggested for the attention module to optimize the 

network’s representation power.  

2. RELATED WORKS 

Deep Learning (DL) is an advancement in ML 

that makes use of an ANN, which is a multi-layered 

structure. DL algorithms need minimal human 

intervention due to automatic extraction of 

characteristics. However, DL differs significantly from 

other ML approaches in that it needs a large amount of 

data to function successfully. Numerous machine 

learning techniques are available that may be used to 

address various issues.  

Sonawani and Patil (2024) developed a unique 

method called the gated recurrent unit of multiheaded 

convolutional neural networks (CNN). This method 

shows the capacity to predict the pollution concentration 

for the hour ahead. Additionally, Transfer learning is 

employed to generate predictions in scenarios involving 

novel systems with limited data available for prediction. 

The model achieved an RMSE value of 55.42% when 

making predictions on a fresh target system with little 

data. Oliveira et al. (2023) used a spatiotemporal graph 

neural network, which follows the GraphSAGE 

paradigm, to predict the ozone levels. Jin et al. (2023) 

developed the network which consists of modules that 

represent spatial and temporal patterns. The spatial 

module extracts geographic data using GraphSAGE, a 

graph sampling and aggregation network. In the temporal 

module, the gated recurrent unit (GRU) is combined with 

a graph network through the use of a Bayesian 

(BGraphGRU) to efficiently capture the temporal data. 

Furthermore, this work utilized Bayesian optimization to 

address the problem of the model’s imprecision. Gilik et 

al. (2022) presented a model which blends a Long short-

term memory (LSTM) deep NN with a CNN. This model 

uses spatial-temporal correlations to predict the air 

pollution in different parts of a metropolis. Waseem et al. 

(2022) computed the daily and hourly PM2.5 

concentrations in Pakistan over 30 and 72 hours and 

evaluated the impact of meteorological circumstances on 

PM2.5 levels. Models such as, LSTM, FbProphet, and 

LSTM encoder-decoder are examples of DL and ML 

models that were utilized for the forecasting. 

In summary, deep learning struggles with 

extracting data characteristics in both the spatial and 

temporal dimensions. The majority of networks fail to 

comprehensively extract data attributes from both the 

temporal and spatial aspects. Moreover, a number of 

models give preference to Euclidean space; nonetheless, 

the locations of air quality monitoring stations often 

deviate from ideal circumstances of Euclidean space. 

Thus, this work presents a novel Lightweight Residual 

Network with attention mechanism, which effectively 

addresses the problems of gradient 

disappearance/explosion in space-time series prediction 

by utilizing the potential of residual neural networks to 

capture spatial information and the advantages of 

attention mechanism. 

3. STUDY AREA 

Bangalore is located at around latitude 12.97° N 

and longitude 77.57° E. The whole area of the city is 741 

km2. Being a rapidly expanding metropolis and a 

significant economic hub, Bangalore often encounters 

diverse obstacles, including urban expansion, 

infrastructure requirements, and the effective 

management of environmental concerns such as air 

pollution. One of the main reasons for rising  levels of 

Bangalore’s air pollution is the city’s fast automobile 

population growth. City is polluted by vehicle emissions 

from both cars and motorbikes. Congestion is becoming 

worse and people are still driving older cars without 

adequate pollution control. Bangalore’s rapid 

development has led to a vast amount of construction 

activity, which increases particulate matter (PM), 

aerosol, and dust emissions. The health and environment 

of Bangaloreans are in danger because of these pollution 

sources.  
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3.1 Monitoring Stations 

In Bangalore, air quality is monitored by the 

National Ambient Air Quality Monitoring Program 

(NAMP). This program is processed by the Central 

Pollution Control Board (CPCB) in collaboration with 

the Karnataka state pollution control board (KSPCB). 

The main aim of the NAMP is to analyze the air quality 

in various Indian cities and regions. In order to analyze 

various air pollutants, the project establishes a network 

of permanent air quality monitoring stations fitted with 

advanced equipment. These stations are placed to collect 

the air quality data that fairly depicts different parts of a 

city. The administration and running of Bangalore’s air 

quality monitoring stations are within the purview of the 

KSPCB. In Bangalore, there are specific monitoring sites 

(ST1-ST8) where air quality data is collected and 

recorded, as specified in Table 1. The existing network 

of monitoring stations in Bangalore is crucial for 

comprehending the 231 geographical and temporal 

variations in air pollution. 

Table 1. Monitoring locations in Bangalore city 

Code Station name 

Elevation 

in mm 

above sea 

level 

Classification 

of location 

ST1 Kadabesanahalli 878 industrial 

ST2 Hombegowda Nagar 910 commercial 

ST3 Peenya 910 industrial 
ST4 BTM 908 commercial 

ST5 Bapuji Nagar 853 commercial 

ST6 Hebbal 903 industrial 
ST7 Silk Board 887 industrial 

ST8 Jayanagar 919 commercial 

3.2 Data Collection 

 The monitoring stations are most likely 

measuring crucial air contaminants. The first phase 

involves gathering data from the current monitoring 

stations, which often assess levels of pollutants such as 

PM2.5, PM10, NO2, SO2, O3, and CO. Typically, these 

stations are strategically positioned in various locations 

across the city. The air pollution monitoring procedure 

used in Bangalore includes consistent and methodical 

data gathering to evaluate the air quality. The monitoring 

is carried out continuously for a duration of one hour, 

using varying sample frequency for gaseous pollutants 

and particulate matter. Air pollution monitoring is 

conducted biweekly. This regularity enables a systematic 

and frequent evaluation of air quality conditions 

throughout the city. The 4-hourly sampling of gaseous 

pollutants and 8-hourly sampling allow the detection of 

short-term changes in pollutant levels, including 

variations that occur at various times of the day. 

3.3 Data Preparation 

The data collected from the monitoring stations 

comprises a series of observed values {𝑥𝑡} that are 

recorded at defined time intervals 𝑡. The time series data 

is taken at hourly intervals. Following the data 

imputation, we continue to standardize all the 

observations inside the interval [0,1] using the following 

method: 

𝑋𝑡 =
𝑥𝑡−min (𝑥𝑡)

𝑚𝑎𝑥(𝑥𝑡)−min (𝑥𝑡)
            … (1) 

Furthermore, the time series is broken down into 

its trend, seasonality, and irregular components using an 

additive model (the cyclic component is not included in 

this study): 

𝑋𝑡 = 𝑡𝑟𝑒𝑛𝑑𝑡 + 𝑐𝑦𝑐𝑙𝑖𝑐𝑡 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡 + 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑡                ... (2) 

The trend component 𝑡𝑟𝑒𝑛𝑑𝑡  at time 𝑡 

represents the long-term evolution of the series, which 

may be either linear or non-linear. The seasonal 

component at time 𝑡, denoted as 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑡, represents 

the fluctuations that occur due to seasonal variation. The 

irregular component 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑡  (also known as "noise") 

at time 𝑡 represents the stochastic and erratic influences. 

Occasionally, the time series exhibits a cyclic component 

𝑐𝑦𝑐𝑙𝑖𝑐𝑡  that represents the recurring but irregular 

fluctuations. 

3.4 Light-AirNet Structure 

The Light-AirNet model has many modules, 

namely the Residual Module which contains a recursive 

residual block, and the Feature Module which 

incorporates an Attention Mechanism, as seen in Fig. 1.  

Let us designate {𝐼𝐿𝑅 , 𝐼𝑆𝑅} as the input and 

output of the network. The process begins with a 

convolutional layer using a kernel size of 3 × 3, which 

may be expressed as follows: 

𝐻𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟 = 𝑓𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟(𝐼𝐿𝑅 , 𝑊𝑐)                       … (3) 

where 𝑓𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟(. ) and 𝑊𝑐  represent the convolution 

operation and parameters applied to the input 𝐼𝐿𝑅. The 

term "𝐻𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟" represents the resulting output, which 

is then used as the input for the Residual Module. Let 

𝐻𝑟𝑚
𝑖,𝑗

 represent the output of the 𝑖-th Residual 

Concatenation Block (RCB) including the 𝑗-th inner 

recursive residual block (RRB). The Residual Module is 

a component that may be precisely specified as: 

𝐻𝑅𝑀 = 𝑓([𝐻𝑐𝑜𝑛𝑣𝑙𝑎𝑦𝑒𝑟 , … , 𝐻𝑅𝐶𝐵
𝑖−1 (𝐻𝑅𝑅𝐵

𝑗−1
; 𝑊𝑐

𝑗
), 𝐻𝑅𝐶𝐵

𝑖 ]𝑊𝑐
𝑖   … (4) 
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Fig. 1: Overall network architecture of the proposed Light-AirNet 

where 𝐻𝑅𝑀 refers the Residual Module output. 

It is important to observe that our RM incorporates 

multiple layers of learning connections, which are then 

followed by a 1 × 1 convolutional layer. This 

convolutional layer serves to regulate the output after 

each block, enabling our model to efficiently transmit 

information throughout the entire network (from lower to 

higher layers and vice versa during backpropagation). 

Additionally, this architecture allows the network to 

acquire multi-level representations. The 𝑖-th RCB may be 

defined as follows: 

𝐻𝑅𝐶𝐵
𝑖 = 𝑓([𝐻𝑅𝑅𝐵

𝑗,𝑅
, … 𝐻𝑅𝑅𝐵

𝑗−1,𝑅
(𝐻𝑖−1; 𝑊𝑐

𝑖]); 𝑊𝑐
𝑗
          … (5) 

Subsequently, the output is sent to the Feature 

Module where the feature maps are first refined, i.e., 

recalibrated, inside the module, followed by the 

extraction of more abstract features. Then , the preceding 

data are combined to effectively mitigate the issues of 

gradient vanishing/exploding and ensure that the network 

may access unaltered information. 

𝐻𝐹𝑒𝑎_𝑚𝑜𝑑𝑢𝑙𝑒 =

          𝑓𝐺𝐿𝑂𝐵𝐴𝐿𝐹𝐸𝐴𝑇
(𝐻𝑎𝑡𝑡𝑚𝑒𝑐ℎ

(𝐻𝑟𝑒𝑠𝑚𝑜𝑑
; 𝑊𝑐); 𝑊𝑐) + 𝐻𝑙𝑜𝑛𝑔_𝑟𝑒𝑠   

                                                                                      … (6) 

In this context, 𝐻𝑎𝑡𝑡𝑚𝑒𝑐ℎ
  represents the 

enhanced attention layer, whereas 𝐻𝑙𝑜𝑛𝑔_𝑟𝑒𝑠 refers to the 

LongRange Residual Connection. The last phase 

involves the use of the MultiScale Module to rebuild the 

picture using the acquired feature-maps. The 

convolutional layer immediately follows the upsampling 

module: 

𝐻𝑢𝑝 = 𝑓𝑝𝑖𝑥(𝐻𝐹𝑒𝑎_𝑚𝑜𝑑𝑢𝑙𝑒)                                         (7) 

where, 𝑓𝑝𝑖𝑥(. ) represents the module function, while 

𝐻𝐹𝑒𝑎_𝑚𝑜𝑑𝑢𝑙𝑒  denotes the output of the 𝐹𝑒𝑎_𝑚𝑜𝑑𝑢𝑙𝑒. The 

characteristics that have been increased in size are 

restored using the convolutional layer. 

𝐼𝑆𝑅 = 𝑓𝑟𝑒𝑐(𝐻𝑢𝑝) = 𝐻Light−AirNet (𝐼𝐿𝑅)                       (8) 

where, 𝑓𝑟𝑒𝑐(. ) and 𝐻Light−AirNet (. ) refer to the 

reconstruction layer and function of our Light-AirNet 

model, respectively. 

3.4.1 Enhanced Residual Block (ERB) 

The ERB is constructed based on the residual 

block, aiming to maintain the simplicity of our Light-

AirNet model while enhancing its performance. This may 

be achieved by fully using the multi-layer feature maps 

inside the ERB. In order to achieve this objective, ERB 

enhances the input feature 𝑓𝑒𝑎𝑖𝑛 ∈ 𝑅𝐻×𝑊×𝐶 by the use 

of a 3×3 convolution layer and a LeakyReLU activation 

function. The feature extracted, represented as 𝑓𝑒𝑎1 ∈
𝑅𝐻×𝑊×𝐶/2, undergoes further refinement in ERB using a 

2 × 2 convolution layer. This refinement process results 

in the output feature 𝑓𝑒𝑎2 ∈ 𝑅𝐻×𝑊×𝐶. 
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𝑓𝑒𝑎1 = LeakyReLU(𝑐𝑜𝑛𝑣3×3(𝑓𝑒𝑎𝑖𝑛))        … (9) 

𝑓𝑒𝑎2 = 𝑐𝑜𝑛𝑣3×3(𝑓𝑒𝑎1)                              … (10) 

This ERB incorporates a skip connection and a 

1×1 convolution to merge the input features (𝑓𝑒𝑎𝑖𝑛 and 

𝑓𝑒𝑎2) and generates the fused feature (𝑓𝑒𝑎𝑓𝑢𝑠𝑒):  

𝑓𝑒𝑎𝑓𝑢𝑠𝑒 = 𝑐𝑜𝑛𝑣1×1(𝑓𝑒𝑎𝑖𝑛 + 𝑓𝑒𝑎2)       … (11) 

Ultimately, this ERB explicitly combines the 

intermediate feature 𝑓𝑒𝑎1 with the fusion feature 𝑓𝑒𝑎𝑓𝑢𝑠𝑒  

to generate the output feature 𝑓𝑒𝑎𝑜𝑢𝑡  in the following 

manner: 

𝑓𝑒𝑎𝑜𝑢𝑡 = 𝑐𝑜𝑛𝑣1×1(𝑐𝑜𝑛𝑐𝑎𝑡(𝑓𝑒𝑎𝑓𝑢𝑠𝑒 , 𝑓𝑒𝑎1)      … (12) 

This  ERB effectively collects and exploits 

multi-layer information that correspond to spatially 

adaptable brightness zones, in contrast to the original 

residual block. The developed ERB, achieved by making 

a simple adjustment to the residual block, functions as a 

lightweight component in the Light-AirNet architecture. 

4. RESULTS AND DISCUSSION 

This proposed model was trained using an 

Nvidia Geforce 2080 GPU, which has a memory capacity 

of 8 GB. The experiment included conducting tests using 

either 5% or 10% of the data for both validation and 

testing purposes, while the remaining data was utilized 

for training. The overall data utilization in the validation 

and testing phase declined from 10% to 5% for the eight 

air quality monitoring sites in Bangalore. The processing 

system used in this investigation comprises a PC fitted 

with an Intel Core i3 CPU and 8 GB of RAM. The 

programming language used in this particular scenario 

for the aims of classification and enhancement is Python 

3.9.7. 

4.1 Performance Metrics 

The performance of the proposed method is 

evaluated by four metrics. They are coefficient of 

determination (R2), mean square error (MSE), mean 

absolute error (MAE), and root-mean-square error 

(RMSE). The expressions are: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦′𝑡 − 𝑦𝑡)2𝑁

𝑖=1                      … (13) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦′𝑡 − 𝑦𝑡)2𝑁

𝑖=1                                    … (14) 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦′𝑡 − 𝑦𝑡)2|𝑁

𝑖=1         … (15) 

𝑅2 = 1 −
∑ (𝑦′𝑡−𝑦𝑡)2𝑁

𝑖

∑ (𝑦′′𝑡−𝑦𝑡)2𝑁
𝑖=1

                                   … (16), 

where 𝑁 denotes the overall quantity of samples in the 

dataset, 𝑦𝑡  and 𝑦′  symbolize the true value and the 

average true value of PM2.5, whereas 𝑦′′ represents the 

projected value of the PM2.5 concentration acquired by 

the model. A decreased number for RMSE, MSE, and 

MAE indicates a superior prediction ability of the model. 

For R2, a score closer to 1 indicates a higher level of 

accuracy in the model’s predictions. 

4.2 Comparative Analysis 

The comparative analysis is conducted for the 

existing techniques such as multiheaded convolutional 

neural networks (MCNN) (Sonawani and Patil, 2024), 

convolutional neural network and a long short-term 

memory (CNN+LSTM) (Gilik et al. 2022) and the 

proposed Light AirNet. 

 

Fig. 2: comparison of RMSE 

 

Fig. 3: Comparison of MSE 

Figure 2 depicts the comparison of RMSE. The 

exiting   method   MCNN   has   RMSE of 55.42%, and  
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CNN+LSTM, with an RMSE of 61.4%, correspondingly. 

Additionally, due to the presence of residual block, the 

proposed Light-AirNet model achieved the lowest 

RMSE at 24.5%, showing the effective performance 

when compared to the other methods.  

Figure 3 depicts the comparison of MSE. The 

exiting method MCNN has MSE of 45.85%, and 

CNN+LSTM, with an MSE of 58.5%, correspondingly. 

Due to the presence of residual block, the proposed 

Light-AirNet model achieved the lowest MSE at 21.5%, 

showing an effective performance when compared to the 

other methods.  

 

Fig. 4: Comparison of MAE 

Figure 4 shows the comparison of MAE, where 

x-axis shows the hours and y axis shows the MAE (%). 

The performance of the existing method MCNN and 

CNN+LSTM achieved 34.68% and 47.2% respectively, 

whereas the Light-AirNet model achieved 12.59% of 

MAE, which is the lowest error value.  

 

Fig. 5: comparison of 𝑹𝟐 

Figure 5 shows the performance of 𝑅2 among 

the existing method MCNN, CNN+LSTM and the 

proposed method Light-AirNet. At 8-10 hours, the 

existing method MCNN and CNN+LSTM achieved 

0.2% and 0.6% of R2, respectively. The proposed Light-

AirNet model achieved 0.9% of 𝑅2, the highest value 

when compared to other methods. Hence, the proposed 

method demonstrates effective performance.  

Table 2 shows the overall comparative analysis 

of existing methods and proposed methods. 

Table 2. Overall comparative analysis 

Parameters 

MCNN 

(Sonawani 

and Patil, 

2024) 

CNN+LSTM 

(Gilik et al. 

2022) 

Light-

AirNet 

[proposed] 

RMSE (%) 55.42 61.4 24.5 

MSE (%) 45.85 58.1 21.5 

MAE (%) 34.68 47.2 12.59 

𝑅2 (%) 0.2 0.6 0.9 

Prediction accuracy 
(%) 

89.2 79.3 97.45 

 The comparative study was conducted using 

the aforementioned parameters with techniques such as 

multiheaded convolutional neural networks (MCNN) 

(Gilik et al. 2022), convolutional neural network and a 

long short-term memory (CNN+LSTM) (Gilik et al. 

2022). However, in relation to work (Gilik et al. 2022), 

the coefficient of determination R2 is used to assess the 

accuracy of the modeled values, which are superior than 

those in (Gilik et al. 2022). Nevertheless, Light-AirNet 

model still outperforms in terms of RMSE and R2. When 

comparing the findings of this work with several deep 

learning methods analysed in literature (Gilik et al. 2022; 

Waseem et al. 2022; Jin et al. 2023), it is evident that the 

attention enhanced model consistently showed 

comparable or better performance. In a recent study 

(Gilik et al. 2022), Light-AirNet demonstrated its ability 

to accurately represent the spatiotemporal relationships 

involved in ozone modeling. It significantly improved 

ozone prediction by 97.45% compared to the reference 

model (Gilik et al. 2022) across several seasons.   

5. CONCLUSION 

The air pollution in Bangalore city was 

predicted by employing neural network in a geo-spatial 

environment.  This resulted in development of pollution 

dispersion maps for the principal gas pollutants. This 

work introduces a Light-AirNet model with an attention 

mechanism to accurately estimate the concentration of 

PM2.5 by considering both the temporal and geographical 

dimensions of air quality data. The mixed network model 

employs a recursive residual module as the first step to 

extract spatial dimension information from the data. This 

model effectively captures and analyzes the attributes of 

the data in both temporal and spatial dimensions, 
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addressing typical gradient issues in time series 

prediction to enhance prediction precision. The minimal 

cost of this model makes it simple to implement in other 

networks. This architecture benefits from both 

propagating information around the network and multi-

level learning connections. 

In further studies, we will evaluate the 

developed model using a more intricate time series 

dataset and attempt to further enhance the overall 

prediction performance of the model by combining the 

graph neural network with other optimization techniques 

and their variations. 

FUNDING 

This research received no specific grant from 

any funding agency in the public, commercial, or not-for-

profit sectors. 

CONFLICTS OF INTEREST 

The authors declare that there is no conflict of 

interest. 

COPYRIGHT 

This article is an open-access article distributed 

under the terms and conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

REFERENCES 

Ailshire, J. A., Crimmins, E. M., Fine particulate matter 

air pollution and cognitive function among older US 

adults, Am. J. Epidemiol., 180(4), 359–66 (2014). 

https://doi.org/10.1093/aje/kwu155  

Bartholomew, D. J., Time series analysis forecasting and 

control, J. Oper. Res. Soc., 22(2), 199–201 (2017). 

https://doi.org/10.1057/jors.1971.52  

 Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M. and 

Ren, H., Global pm2.5-attributable health burden 

from,. to 2017: estimates from the global burden of 

disease study 2017, Environ Res.,  197, 1-9 (2021). 

https://doi.org/10.1016/j.envres.2021.111123 

 Danesh, Y. M., Kuang, Z., Dimakopoulou, K., Barratt, 
B., Suel, E., Amini, H., Lyapustin, A., Katsouyanni, 
K., Schwartz, J., Predicting fne particulate matter 
(pm2. 5) in the greater London area: an ensemble 
approach using machine learning methods, Remote 
Sens., 12(6), 1-18 (2020). 
https://doi.org/10.3390/rs12060914 

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., 

Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, 

B., Dandona, L., Dandona, R., Feigin, V., Freedman, 

G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, 

Y., Martin, R., Morawska, L., Pope, C. A., Shin, H., 

Straif, K., Shaddick, G., Thomas, M., Dingenen, R., 

Donkelaar, A., Vos, T., Murray, C. J. L., Forouzanfar, 

M. H., Estimates and 25-year trends of the global 

burden of disease attributable to ambient air 

pollution: an analysis of data from the global burden 

of diseases study 2015, Lancet.,389(10082), 1907–

1918 (2017).  

  https://doi.org/10.1016%2FS0140-6736(17)30505-6 

Du. Y., Xu, X., Chu, M., Guo, Y. and Wang, J., Air 

particulate matter and cardiovascular disease: the 

epidemiological, biomedical and clinical evidence, J. 

Thoracic. Dis., 8(1), E8-E19 (2016).  

https://doi.org/10.3978/j.issn.2072-1439.2015.11.37 

Gilik, A., Ogrenci, A. S. and Ozmen, A., Air quality 

prediction using CNN+ LSTM-based hybrid deep 

learning architecture, Environ. Sci. Pollut. Res., 

29(8), 11920-11938 (2022). 

https://doi.org/10.1007/s11356-021-16227-w 

Jin, X. B., Wang, Z. Y., Kong, J. L., Bai, Y. T., Su, T. L., 

Ma, H. J. and Chakrabarti, P., Deep spatio-temporal 

graph network with self-optimization for air quality 

prediction. Entropy, 25(2), 1-15 (2023). 

https://doi.org/10.3390/e25020247 

Kumar, U. and Jain, V., Arima forecasting of ambient air 

pollutants (O3, NO, NO2 and CO), Stochastic 

Environ. Res. Risk Assess., 24(5), 751–60 (2010). 

https://doi.org/10.1007/s00477-009-0361-8 

Lin, K. P., Pai, P. F. and Yang, S. L., Forecasting 

concentrations of air pollutants by logarithm support 

vector regression with immune algorithms, Appl. 

Math. Comput., 217(12), 5318–5327 (2011). 

http://dx.doi.org/10.1016/j.amc.2010.11.055 

Lu, D., Mao, W., Xiao, W., Zhang, L., Non-linear 

response of pm2.5 pollution to land use change in 

China, Remote Sens., 13(9), 1-13 (2021). 

https://doi.org/10.3390/rs13091612 

 Mishra, D. and Goyal, P., Neuro-fuzzy approach to 

forecasting ozone episodes over the urban area of 

Delhi, India, Environ Technol Innov., 5, 83–94 

(2016).  

 https://doi.org/10.1016/j.eti.2016.01.001  

Oliveira, S. V., Costa, R. P. A., Scott, J., Van, G. Thé, J. 

and Gharabaghi, B., Spatiotemporal air pollution 

forecasting in houston-TX: a case study for ozone 

using deep graph neural networks, Atmos., 14(2), 1-

23 (2023).  

  https://doi.org/10.3390/atmos14020308 

 Pöschl, U., Atmospheric aerosols: composition, 

transformation, climate and health effects, Angew. 

Chem. Int. Ed., 44(46), 7520-7540 (2005). 

https://doi.org/10.1002/anie.200501122  

http://creativecommons.org/licenses/by/4.0/


P. Muthusamy et al. / J. Environ. Nanotechnol., Vol. 13(1), 125-132 (2024) 

132 

Sonawani, S. and Patil, K., Air quality measurement, 

prediction and warning using transfer learning based 

IOT system for ambient assisted living, Int. J. 

Pervasive Comput. Commun., 20(1), 38-55 (2024). 

https://doi.org/10.1108/IJPCC-07-2022-0271 

 Wang, P., Liu, Y., Qin, Z., Zhang, G., A novel hybrid 

forecasting model for pm10 and so2 daily 

concentrations, Sci. Tot. Environ., 505,1202–1212 

(2015). 

https://doi.org/10.1016/j.scitotenv.2014.10.078 

Waseem, K. H., Mushtaq, H., Abid, F., Abu-Mahfouz, A. 

M., Shaikh, A., Turan, M. and Rasheed, J., 

Forecasting of air quality using an optimized 

recurrent neural network, Processes, 10(10), 1-20 

(2022).  
  https://doi.org/10.3390/pr10102117 

Yu, R., Yang, Y., Yang, L., Han, G. and Move, O. A., 

RAQ-A random forest approach for predicting air 

quality in urban sensing systems, Sensors, 16(1), 1-

18 (2016).  

  https://doi.org/10.3390/s16010086 
Zaidan, M. A., Dada, L., Alghamdi, M. A., Al-Jeelani, 

H., Lihavainen, H., Hyvärinen, A. and Hussein, T., 
Mutual information input selector and probabilistic 
machine learning utilisation for air pollution proxies, 
Appl. Sci., 9(20), 1-20 (2019). 
https://doi.org/10.3390/app9204475 

  

 

 

 


