Open Access

Development of Green Engineered Cementitious Composite using Fly Ash and Nanosilica for 3D Printing

S. Anandaraj, umailanandkrish@gmail.com
Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, TN, India
S. Sakthi Sowmya, Department of Civil Engineering, Kongu Engineering College, Perundurai, TN, India A. R. Krishnaraja, Department of Civil Engineering, Kongu Engineering College, Perundurai, TN, India T. Mithun Department of Civil Engineering, Kongu Engineering College, Perundurai, TN, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 117-124

https://doi.org/10.13074/jent.2024.03.241515

PDF


Abstract

The effects of adding Nanosilica (NS) to Engineered Cementitious Composites (ECC) for 3D Printing (3DP) applications were investigated in this study. The mechanical characteristics of 3DP ECC mortar with different NS contents were investigated. The basic components of the composite included fly ash, M-sand, polypropylene fibers, Ordinary Portland Cement, nanosilica and an accelerator. There were four different mix proportions of NS involving 0.05%, 0.1%, 0.15%, and 0.2%. After 3, 7, 14, and 28 days of curing, the following strengths, viz., pull-out strength, direct tensile strength, compressive strength, and flexural strength were assessed. Addition of NS improved the mechanical properties of ECC up to an ideal level of 0.15%, after which decreasing returns and adverse effects, including agglomeration, were observed. Insights into the ideal NS content for obtaining maximum performance of ECC obtained from the study provide knowledge for formulations in high-performance 3DP technologies.

Full Text

Reference


Afroughsabet, V. and Teng, S., Experiments on drying shrinkage and creep of high performance hybrid-fiber-reinforced concrete, Cem. Concr. Compos., 106, 103481 (2020).

https://doi.org/10.1016/j.cemconcomp.2019.103481

Althoey, F., Zaid, O., Martínez, G. R., Alsharari, F., Ahmed, M. and Arbili, M. M., Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review, Case Stud. Constr. Mater., 18, e01997 (2023).

https://doi.org/10.1016/j.cscm.2023.e01997

Buswell, R. A., Da, S. W. L., Bos, F. P., Schipper, H. R., Lowke, D., Hack, N., Kloft, H., Mechtcherine, V., Wangler, T. and Roussel, N., A process classification framework for defining and describing Digital Fabrication with Concrete, Cem. Concr. Res., 134, 106068 (2020).

https://doi.org/10.1016/j.cemconres.2020.106068

Elkady, H., Serag, M. I. and Elfeky, M. S., Effect of nano silica de-agglomeration, and methods of adding super-plasticizer on the compressive strength, and workability of nano silica concrete, Civ, Environ. Res., 3(2), 21-34 (2013).

Eštoková, A., Wolfová Fabiánová, M. and Ondová, M., Concrete structures and their impacts on climate change and water and raw material resource depletion, Int. J. Civ. Eng., 20(6), 735-747 (2022).

https://doi.org/10.1007/s40999-022-00701-8

Fang, B., Hu, Z., Shi, T., Liu, Y., Wang, X., Yang, D., Zhu, K., Zhao, X. and Zhao, Z., Research progress on the properties and applications of magnesium phosphate cement, Ceram. Int., 49(3), 4001-4016 (2023).

https://doi.org/10.1007/s12205-023-0623-x

Ferdinánd, M., Várdai, R., Lummerstorfer, T., Pretschuh, C., Gahleitner, M., Faludi, G., Móczó, J. and Pukánszky, B., Impact modification of PP with short PET fibers: Effect of heat setting on fiber characteristics and composite properties, Compos. Struct., 311, 116810 (2023).

https://doi.org/10.1016/j.compstruct.2023.116810

Halvaei, M., Jamshidi, M., Latifi, M. and Behdouj, Z., Performance of low modulus fibers in engineered cementitious composites (ECCs): flexural strength and pull out resistance, Adv. Mater. Res., 687, 495-501 (2013).

https://doi.org/10.4028/www.scientific.net/AMR.687.495

Huang, H., Li, M., Yuan, Y. and Bai, H., Experimental research on the seismic performance of precast concrete frame with replaceable artificial controllable plastic hinges, J. Struct. Eng., 149(1), 04022222 (2023).

https://doi.org/10.1061/jsendh.steng-11648

Ji, J., Zhang, Z., Lin, M., Li, L., Jiang, L., Ding, Y. and Yu, K., Structural application of engineered cementitious composites (ECC): A state-of-the-art review, Constr. Build. Mater., 406, 133289 (2023).

https://doi.org/10.1016/j.conbuildmat.2023.133289

Khokhar, S. A., Ahmed, T., Khushnood, R. A., Basit, M. U. and Javed, S., Development of low carbon engineered cementitious composite (ECC) using nano lime calcined clay cement (nLC3) based matrix, Case Stud. Constr. Mater., 20, e02669 (2024).

https://doi.org/10.1016/j.cscm.2023.e02669

Krishnamoorthy, M., Tensing, D., Sivaraja, M. and Krishnaraja, A. R., Durability studies on polyethylene terephthalate (PET) fibre reinforced concrete, Int. J. Civ. Eng. Technol., 8(10), 634-640 (2017).

Krishnaraja, A. R. and Kandasamy, S., Flexural performance of engineered cementitious compositelayered reinforced concrete beams, Arch. Civ. Eng., 63(4), 173-189 (2017).

http://dx.doi.org/10.1515/ace-2017-0048

Krishnaraja, A. R., Anandakumar, S. and Jegan, S. M., Mechanical performance of hybrid engineered cementitious composites, Cement Wapno Beton, 23(6), 479-486 (2018).

Krishnaraja, A. R., Harihanandh, M. and Anandakumar, S., Mechanical performance of engineered cementitious composites developed with different modulus fibers, Cement Wapno Beton, 26(6), 493-502 (2022).

Li, F., Liu, G., Liu, M., Yang, Z., Chen, Z., Wen, T., Guo, J. and Shao, J., Investigations on influences of Engineered Cementitious Composites (ECC) on pull-out properties of studs in steel-concrete composite bridge, Case Stud. Constr. Mater., 18, e02131 (2023).

https://doi.org/10.1016/j.cscm.2023.e02131

Liu, Q., Jiang, Q., Zhou, Z., Xin, J. and Huang, M., The printable and hardened properties of nano-calcium carbonate with modified polypropylene fibers for cement-based 3D printing, Constr. Build. Mater., 369, 130594 (2023).

https://dx.doi.org/10.2139/ssrn.4217565

Lu, M., Xiao, H., Liu, M., Li, X., Li, H. and Sun, L., Improved interfacial strength of SiO2 coated carbon fiber in cement matrix, Cem. Concr. Compos., 91, 21-28 (2018).

https://doi.org/10.1016/j.cemconcomp.2018.04.007

Malchiodi, B., Pelaccia, R., Pozzi, P. and Siligardi, C., Three sustainable polypropylene surface treatments for the compatibility optimization of PP fibers and cement matrix in fiber-reinforced concrete, Ceram. Int., 49(14), 24611-24619 (2023).

https://doi.org/10.1016/j.ceramint.2023.02.105

Mohamed, A. M., Influence of nano materials on flexural behavior and compressive strength of concrete, HBRC journal, 12(2), 212-225 (2016).

https://doi.org/10.1016/j.hbrcj.2014.11.006

Nazar, S., Yang, J., Amin, M. N., Husnain, M., Ahmad, F., Alabduljabbar, H. and Deifalla, A. F., Investigating the Influence of PVA and PP Fibers on the Mechanical, Durability, and Microstructural Properties of One-Part Alkali-Activated Mortar: An Experimental Study, J. Mater. Res. Technol., 25, 3482-3495 (2023).

https://doi.org/10.1016/j.jmrt.2023.06.115

Oh, T., Chun, B., Lee, S. K., Lee, W., Banthia, N. and Yoo, D. Y., Substitutive effect of nano-SiO2 for silica fume in ultra-high-performance concrete on fiber pull-out behavior, J. Mater. Res. Technol., 20, 1993-2007 (2022).

https://doi.org/10.1016/j.jmrt.2022.08.013

Sun, J., Aslani, F., Wei, J. and Wang, X., Electromagnetic absorption of copper fiber oriented composite using 3D printing, Constr. Build. Mater., 300, 124026 (2021).

http://dx.doi.org/10.1016/j.conbuildmat.2021.124026

Tran, H. B. and Phan, V. T. A., Potential usage of fly ash and nano silica in high-strength concrete: laboratory experiment and application in rigid pavement, Case Stud. Constr. Mater., 20(12), e02856 (2024).

http://dx.doi.org/10.1016/j.cscm.2024.e02856

Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J. and Pukánszky, B., Reinforcement of PP with polymer fibers: Effect of matrix characteristics, fiber type and interfacial adhesion, Polym., 190, 122203 (2020).

https://doi.org/10.1016/j.polymer.2020.122203

Wan, Q., Yang, W., Wang, L. and Ma, G., Global continuous path planning for 3D concrete printing multi-branched structure, Addit. Manuf., 71, 103581 (2023).

https://doi.org/10.1016/j.addma.2023.103581

Wasim, M., Abadel, A., Bakar, B. A. and Alshaikh, I. M., Future directions for the application of zero carbon concrete in civil engineering–A review, Case Stud. Constr. Mater., 17(2), e01318 (2022).

http://dx.doi.org/10.1016/j.cscm.2022.e01318

Wu, Z., Khayat, K. H. and Shi, C., Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete, Cem. Concr. Res., 95(2), 247-256 (2017).

http://dx.doi.org/10.1016/j.cemconres.2017.02.031

Yang, Z., He, R., Tan, Y., Chen, H. and Cao, D., Air pore structure, strength and frost resistance of air-entrained mortar with different dosage of nano-SiO2 hydrosol, Constr. Build. Mater., 308, 125096 (2021).

http://dx.doi.org/10.1016/j.conbuildmat.2021.125096

Zhang, H., Wu, Z., Hu, X., Ouyang, X., Zhang, Z., Banthia, N. and Shi, C., Design, production, and properties of high-strength high-ductility cementitious composite (HSHDCC): A review, Composites, Part B, 110258 (2022).

https://doi.org/10.1016/j.compositesb.2022.110258

Zhang, M., Zhu, X., Liu, B., Shi, J., Gencel, O. and Ozbakkaloglu, T., Mechanical property and durability of engineered cementitious composites (ECC) with nano-material and superabsorbent polymers, Powder Technol., 409, 117839 (2022).

https://doi.org/10.1016/j.powtec.2022.117839

Zhang, R. C., Wang, L., Xue, X. and Ma, G. W., Environmental profile of 3D concrete printing technology in desert areas via life cycle assessment, J. Cleaner Prod., 396, 136412 (2023).

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS