Exploring the Effect of Engineered Nanomaterials on Soil Microbial Diversity and Functions: A Review
J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 48-62
Abstract
This review explores the impact of engineered nanomaterials (ENMs) on soil microbial diversity, function, metabolic pathways, and resilience. With the increasing application of ENMs in agriculture and industrial fields, understanding their interaction with soil microorganisms is crucial. We examine various types of ENMs, their physicochemical properties, and how these influence soil microbial communities. This review highlights the dual role of ENMs, demonstrating both beneficial and detrimental effects on microbial diversity and activity. Fundamental interaction mechanisms, such as altering metabolic pathways and microbial community structure, are discussed. Additionally, we address the implications of ENM-induced changes for soil health and agricultural productivity. Further, the review provides insights into the complex dynamics of ENMs in soil ecosystems and outlines directions for future research to optimize their use while minimizing environmental risks.
Full Text
Reference
Adams, L. K., Lyon, D. Y. and Alvarez, P. J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water. Res., 40(19), 3527-3532 (2006).
https://doi.org/10.1016/j.watres.2006.08.004
Adeleke, B. S., Akinola, S. A., Adedayo, A. A., Glick, B. R. and Babalola, O. O., Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants, Front. Environ. Sci., 10, 2398 (2022).
https://doi.org/10.3389/fenvs.2022.1015897
Alghuthaymi, M. A., Rajkuberan, C., Rajiv, P., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd, E. K. A., Valis, M. and Kuca, K., Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives, J. Fungi. (Basel), 7(1), 1-20 (2021).
https://doi.org/10.3390/jof7010048
Avila, Q. G. D., Golinska, P. and Rai, M., Engineered nanomaterials in plant diseases: can we combat phytopathogens?, Appl. Microbiol. Biotechnol., 106(1), 117-129 (2022).
https://doi.org/10.1007/s00253-021-11725-w
Bahrulolum, H., Saghi, N., Nahid, J., Hossein, T., Vasighe, S., M., Andrew J. E. and Gholamreza, A., Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector, J. Nanobiotechnol., 19(1), 1-26 (2021).
https://doi.org/10.1186/s12951-021-00834-3
Barhoum, A., García, B. M. L., Jeevanandam, J., Hussien, E. A., Mekkawy, S. A., Mostafa, M., Omran, M. M. S., Abdalla, M. and Bechelany, M., Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations, Nanomater., 12(2), 177 (2022).
https://doi.org/10.3390/nano12020177
Baroja, F. E., Almagro, G., Sánchez, L. Á. M., Bahaji, A., Gámez, A. S., De, D. N., Dolezal, K. , Muñoz, F. J., Climent, S. E. and Pozueta, R. J., Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota, Front. Plant. Sci., 12, 752653 (2021).
https://doi.org/10.3389/fpls.2021.752653
Bhatia, R., Gulati, D. and Sethi, G. Biofilms and nanoparticles: applications in agriculture, Folia microbiologica, 66(2), 159-170 (2021).
https://doi.org/10.1007/s12223-021-00851-7
Bora, K. A., Saud, H., Faisal, Z., Zainul, A., Haibat, A., Zamin, S. S., Kadambot H. M. S., Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture, Front. Plant Sci., 13, 999505 (2022).
https://doi.org/10.3389/fpls.2022.999505
Bundschuh, M., Juliane, F., Simon L., Moira, S. M., George, M., Gabriele, E. S., Ralf, S. and Stephan, W., Nanoparticles in the environment: where do we come from, where do we go to?, Environ. Sci. Eur., 30(1), 6 (2018).
https://doi.org/10.1186/s12302-018-0132-6
Carboni, A., Danielle, L. S., Mohammad, N., Catherine, S., Armand, M., Jerome, R. and Melanie, A., Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials, Environ. Sci. Technol., 55(24), 16270-16282 (2021).
https://doi.org/10.1021/acs.est.1c02221
Carnovale, C., Gary, B., Ravi, S. and Vipul, B., Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity, Prog. Mater Sci., 83, 152-190 (2016).
https://doi.org/10.1016/j.pmatsci.2016.04.003
Changcheng, A., Changjiao, S., Ningjun, L., Bingna, H., Jiajun, J., Yue, S., Chong, W., Xiang, Z., Bo, C., Chunxin, W., Xingye, L., Shenshan, Z., Fei, G., Zhanghua, Z., Haixin, C. and Yan, W., Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture, J. Nanobiotechnol., 20(1), 11 (2022).
https://doi.org/10.1186/s12951-021-01214-7
Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., Chen, X., Yu, H., Wu, Y., Xu, K., Zheng, X., Hu, R., He, Z. and Yan, Q., Resistance and Resilience of Fish Gut Microbiota to Silver Nanoparticles, mSystems, 6(5), e0063021 (2021).
https://doi.org/10.1128/mSystems.00630-21
Connolly, M., Simon, L., Mark, G. J. H. and Teresa, F. F., An Integrated Testing Strategy for Ecotoxicity (ITS-ECO) Assessment in the Marine Environmental Compartment using Mytilus spp.: A Case Study using Pristine and Coated CuO and TiO(2) Nanomaterials, Environ. Toxicol. Chem., 41(6), 1390-1406 (2022).
https://doi.org/10.1002/etc.5313
Debashish, A., Malabika, S. K., Piyush, P., Bidhan, M., Jina, R. and Paikhomba, S. L., Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria, Sci. Rep., 8(1), 1-11 (2018).
https://doi.org/10.1038/s41598-017-18590-6
Desmau, M., Andrea, C., Maureen, L. B., Emmanuel, D., Marc, F. B., Mélanie, A., Clément, L. and Alexandre, G., How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?, Front. Environ. Sci., 8, 1-20 (2020).
https://doi.org/10.3389/fenvs.2020.00082
Erdem, A., David, M., Daniel, K. C. and Huang, C. P., The short-term toxic effects of TiO 2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation, Environ. Sci. Pollut. Res., 22, 17917-17924 (2015).
https://doi.org/10.1007/s11356-015-5018-1
Fadeel, B., Neus, F., Carmen, V., Abuelmagd, M. A. and Wolfgang, J. P., Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5(2), 111-129 (2013).
https://doi.org/10.1002/wnan.1206
Farrow, B. and Kamat, P. V. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups, J. Am. Chem. Soc., 131(31), 11124-11131 (2009).
https://doi.org/10.1021/ja903337c
Fazel, A. M., Daniel, A. L., Petr, P., Renato, G., Peng, Z., Zhiling, G., Martina, G. V. and Willie, J. G. M. P., Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?, Nanotoxicology, 14(3), 310-325 (2020).
https://doi.org/10.1080/17435390.2019.1692381
Gardea, T. J. L., Rico, C. M. and White, J. C., Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments, Environ. Sci. Technol., 48(5), 2526-2540 (2014).
https://doi.org/10.1021/es4050665
Gatoo, M. A., Sufia, N., Mir, Y. A., Ayaz, M. D., Khusro, Q. and Swaleha, Z., Physicochemical properties of nanomaterials: implication in associated toxic manifestations, Biomed. Res. Int., 2014, 1-8 (2014).
https://doi.org/10.1155/2014/498420
Ge, Y., Schimel, J. P. and Holden, P. A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities, Environ. Sci. Technol., 45(4), 1659-1664 (2011).
https://doi.org/10.1021/es103040t
George, N. T., Nibu, V., Nandakumar, K., Sabu, T., Mridula, S., Sherin, S. G., Saumya, J., Mekha, G. V. and Valliaveettil, T. G., Toxicity Evaluation and Biocompatibility of Nanostructured Biomaterials, Anil, S., Mahmoud Ahmed, M. (Eds.), Cytotoxicity - Understanding Cellular Damage and Response, IntechOpen, 3, (2023).
https://doi.org/10.5772/intechopen.109078
Ghidan, Y. A., Al, A. M. T. Applications of Nanotechnology in Agriculture, Margarita, S., Roumen, Z. (Eds.), Applications of Nanobiotechnology, IntechOpen, 3, (2020).
https://doi.org/10.5772/intechopen.88390
Leanne, M. G., Leila, P., Stephanie, L., Xiaoyu, G., Julie, B. Z., Thomas, L. T., Paul, W. and Gregory, V. L., Guiding the design space for nanotechnology to advance sustainable crop production, Nat. Nanotechnol., 15(9), 801-810 (2020).
https://doi.org/10.1038/s41565-020-0706-5
Grasso, G., Zane, D. and Dragone, R., Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications, Nanomater., 10(1), (2019).
https://doi.org/10.3390/nano10010011
Grün, A. L., Werner, M., Yvonne, L. K., Florian, M., Susanne, S., Carsten, J., Roland, D. and Christoph, E., Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture, Environ. Sci. Eur., 31(1), 15 (2019).
https://doi.org/10.1186/s12302-019-0196-y
He, Y., Wen, C. Y., Guo, Z. J. and Huang, Y. F., Noble metal nanomaterial-based aptasensors for microbial toxin detection, J. Food Drug Anal., 28(4), 508-520 (2020).
https://doi.org/10.38212/2224-6614.1155
Hegde, K., Satinder, K. B., Mausam, V. and Rao, Y. S., Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms, Nanotechnology for Environmental Engineering, 1(1), 1-12 (2016).
https://doi.org/10.1007/s41204-016-0005-4
Horst, A. M., Raja, V., John, H. P. and Patricia, A. H., An assessment of fluorescence- and absorbance-based assays to study metal-oxide nanoparticle ROS production and effects on bacterial membranes, Small, 9(9), 1753-1764 (2013).
https://doi.org/10.1002/smll.201201455
Hussain, M., Nomanm, S., Muhammad, A., Muhammad, A. A., Haichao, Z., Zhiyong, Z., Ming, X., Yukui, R. and Jason, C. W., Nano-enabled plant microbiome engineering for disease resistance, Nano Today, 48, 101752 (2023).
https://doi.org/10.1016/j.nantod.2023.101752
Ilgen, A. G., Kukkadapu, R. K., Leunga K. and Washingtona, R. E., “Switching on” iron in clay minerals, Environ. Sci. Nano, 6(6), 1704-1715 (2019).
https://doi.org/10.1039/c9en00228f
Ivask, A., Bondarenko, O., Jepihhina N. and Kahru, A., Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals, Anal. Bioanal. Chem., 398(2), 701-716 (2010).
https://doi.org/10.1007/s00216-010-3962-7
Jiang, C., Songlin, L., Tong, Z., Qian, L., Pedro, J. J. A., and Wei, C., Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment, Environ. Sci. Technol., 56(12), 7426-7447 (2022).
https://doi.org/10.1021/acs.est.1c08011
Jin, L., Yowhan, S., Tae, K. Y., Yu, J. K., Woong, K. and Haegeun, C., High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass, Ecotoxicol. Environ. Saf., 88, 9-15 (2013).
https://doi.org/10.1016/j.ecoenv.2012.10.031
Judy, J. D., Jason, K., K., Courtney, C., Mike, J. M., Cathy, F., Claire, W., Timothy, R. C. and Paul, M. B., Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil, Environ. Pollut., 206, 256-263 (2015a).
https://doi.org/10.1016/j.envpol.2015.07.002
Judy, J. D., David, H. M. J., Chun, C., Ricky, W. L., Olga, V. T., Paul, M. B., William, R., John, S., Gregory, V. L., Steve, P. M., Mark, D. and Jason, M. U., Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in Increased Metal Uptake Relative to Bulk/Dissolved Metals, Environ. Sc.i Technol., 49(14). 8751-8758 (2015b).
https://doi.org/10.1021/acs.est.5b01208
Kah, M., Tufenkji, N. and White, J. C. Nano-enabled strategies to enhance crop nutrition and protection, Nat. Nanotechnol., 14(6), 532-540 (2019).
https://doi.org/10.1038/s41565-019-0439-5
Käkinen, A., Bondarenko, O., Ivask, A. and Kahru, A., The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor, Sens., 11(11), 10502-10521 (2011).
https://doi.org/10.3390/s111110502
Kamat, S. and Kumari, M., Emergence of microbial resistance against nanoparticles: Mechanisms and strategies, Front. Microbiol., 14, 1102615 (2023).
https://doi.org/10.3389/fmicb.2023.1102615
Kang, S. and Mauter, M. S., Elimelech, M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43(7), 2648-2653 (2009).
https://doi.org/10.1021/es8031506
Karn, B., Kuiken, T., Otto, M., Nanotechnology and in situ remediation: a review of the benefits and potential risks, Environ. Health Perspect, 117(12), 1813-1831 (2009).
https://doi.org/10.1289/ehp.0900793
Kaur, H., Anu, K., Jagdeep, S. S., Gurmeet, S. D., Gurwinder, K. and Shivali, P., Interaction of TiO(2) nanoparticles with soil: Effect on microbiological and chemical traits. Chemosphere, 301, 134629 (2022).
https://doi.org/10.1016/j.chemosphere.2022.134629
Khan, S. T., Adil, S. F., Shaik, M. R., Alkhathlan, H. Z., Khan, M. and Khan, M., Engineered nanomaterials in soil: their impact on soil microbiome and plant health, Plants, 11(1), 109 (2021).
https://doi.org/10.3390/plants11010109
Khanna, K., Sukhmeen, K. K., Neha, H., Harsimran, K., Puja, O., Renu, B., Balal, Y., Jörg, R. and Parvaiz, A., Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation, Ecotoxicol. Environ. Saf., 222, 112459 (2021).
https://doi.org/10.1016/j.ecoenv.2021.112459
Kibbey, T. C. G. and Strevett, K. A., The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings, Chemosphere, 221, 703-707 (2019).
https://doi.org/10.1016/j.chemosphere.2019.01.091
Kou, L., Jin, S., Yinglei, Z. and Zhonggui, H., The endocytosis and intracellular fate of nanomedicines: Implication for rational design, Asian Journal of Pharmaceutical Sciences, 8(1), 1-10 (2013).
https://doi.org/10.1016/j.ajps.2013.07.001
Kumar, A., Alok, K. P., Shashi, S. S., Rishi, S. and Alok, D., Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli, Free Radic. Biol. Med., 51(10), 1872-1881 (2011).
https://doi.org/10.1016/j.freeradbiomed.2011.08.025
Kumari, R., Suman, K., Karmakar, S., Mishra, V., Lakra, S. G., Saurav, G. K. and Mahto, B. K., Regulation and safety measures for nanotechnology-based agri-products, Front. Genome Ed., 5, 1200987 (2023).
https://doi.org/10.3389/fgeed.2023.1200987
Laudadio, E. D., Joseph, W. B., Curtis, M. G., Sara, E. M. and Robert, J. H., Impact of Phosphate Adsorption on Complex Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media, Environ. Sci. Technol., 52(17), 10186-10195 (2018).
https://doi.org/10.1021/acs.est.8b02324
Lee, E., Hyunjin, J., Minhyeong, L., Jeahee, R., Chungwon, K., Soyoun, K., Junghyun, J. and Youngeun, K., Molecular origin of AuNPs-induced cytotoxicity and mechanistic study, Sci. Rep., 9(1), 2494 (2019).
https://doi.org/10.1038/s41598-019-39579-3
Lewis, R. W., Bertsch, P. M. and McNear, D. H. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review, Nanotoxicology, 13(3), 392-428 (2019).
https://doi.org/10.1080/17435390.2018.1530391
Li, Y., Peng, Z., Mingshu, L., Noman, S., Muhammad, A., Pingfan, Z., Manlin, G., Yaqi, J., Weichen, Z., Ben, Z. L. and Yukui, R., Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases, Pest. Manag. Sci., 79(1), 21-36 (2023).
https://doi.org/10.1002/ps.7218
Li, Z., Tao, Y., Rajesh, P., Jingyuan, F., Yuming, Y. and Qingshan, W., Agricultural nanodiagnostics for plant diseases: recent advances and challenges, Nanoscale Adv., 2(8), 3083-3094 (2020).
https://doi.org/10.1039/c9na00724e
Liu, Q., Chunxiang, C., Mengting, L., Jia, K., Yichen, H., Yuefeng, B., Shufen, G., Yang, W., Yan, H. and Mingyuan, L., Neurodevelopmental Toxicity of Polystyrene Nanoplastics in Caenorhabditis elegans and the Regulating Effect of Presenilin, ACS Omega, 5(51), 33170-33177 (2020).
https://doi.org/10.1021/acsomega.0c04830
Lyon, D. Y., Laura, K. A., Joshua, C. F. and Pedro, J. J. A., Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size, Environ. Sci. Technol., 40(14), 4360-4366 (2006).
https://doi.org/10.1021/es0603655
Makvandi, P., Meiling, C., Rossella, S., Ali, Z., Milad, A., Farnaz, D. M., Jingzhi, M., Virgilio, M. and Franklin, R. T., Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking, Nano Today, 40, 101279 (2021).
https://doi.org/10.1016/j.nantod.2021.101279
Mansor, M. and Xu, J., Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality, Environ. Microbiol., 22(9), 3633-3649 (2020).
https://doi.org/10.1111/1462-2920.15174
McFarlane, I. R., Lazzari, D. J. R. and El, N. M. Y., Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers, Acta Biomater., 13, 364-373 (2015).
https://doi.org/10.1016/j.actbio.2014.11.005
Md, M. A., Arvid, M., Brianna, S., Ian, B. and Nirupam, A., Long-Term Exposure and Effects of rGO-nZVI Nanohybrids and Their Parent Nanomaterials on Wastewater-Nitrifying Microbial Communities, Environ. Sci. Technol., 56(1), 512-524 (2022).
https://doi.org/10.1021/acs.est.1c02586
Mehla, J., Malloci, G., Mansbach, R., López, C. A., Tsivkovski, R., Haynes, K., Leus, I. V., Grindstaff, S. B., Cascella, R. H.,Cunha, N. D., Herndon, L., Hengartner, N. W., Margiotta, E., Atzori, A., Vargiu, A. V., Manrique, P. D., Walker, J. K., Lomovskaya, O., Ruggerone, P., Gnanakaran, S., Rybenkov, V. V., Zgurskaya, H. I., Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa, mBio, 12(1), 10-1128 (2021).
https://doi.org/10.1128/mBio.02785-20
Mendoza, R. P. and Brown, J. M. Engineered nanomaterials and oxidative stress: current understanding and future challenges, Curr. Opin. Toxicol., 13, 74-80 (2019).
https://doi.org/10.1016/j.cotox.2018.09.001
Meulenkamp, E. A., Size dependence of the dissolution of ZnO nanoparticles, The Journal of Physical Chemistry B, 102(40), 7764-7769 (1998).
https://doi.org/10.1021/JP982305U
Miao, A. J., Zhang, X. Y., Zhiping, L., Chen, C. S., Chin, W. C., Peter, H. S. and Antonietta, Q., Zinc oxide–engineered nanoparticles: dissolution and toxicity to marine phytoplankton, Environ. Toxicol. Chem., 29(12), 2814-2822 (2010).
https://doi.org/10.1002/etc.340
Mitchell, S. L., Hudson, S. N. V., Cahill, M. S., Reynolds, B. N., Frand, S. D., Green, C. M., Wang, C., Hang, M. N., Hernandez, R. T., Hamers, R. J., Feng, Z. V., Haynes, C. L. and Carlson, E. E., Chronic exposure to complex metal oxide nanoparticles elicits rapid resistance in Shewanella oneidensis MR-1, Chem. Sci., 10(42), 9768-9781 (2019).
https://doi.org/10.1039/c9sc01942a
Modi, S. K., Gaur, S., Sengupta, M. and Singh, M. S., Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance, Front. Microbiol., 14, 1135579 (2023).
https://doi.org/10.3389/fmicb.2023.1135579
Moore, J. D., John, P. S., Kyle, B., Stella, M. M., Gregory, V. L. and Kelvin, B. G., Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived, Environ. Sci. Technol., (2016a).
https://doi.org/10.1021/acs.est.5b05054
Joe, D. M., John, P. S., Kyle, B., Stella, M. M., Gregory, V. L. and Kelvin, B. G., Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived, Environ. Sci. Technol., 50(5), 2641-2651 (2016b).
https://doi.org/10.1021/acs.est.5b05054
Mortimer, M., Wang, Y. and Holden, P. A., Molecular Mechanisms of Nanomaterial-Bacterial Interactions Revealed by Omics—The Role of Nanomaterial Effect Level, Front. Bioeng. Biotechnol., 9, 683520 (2021).
https://doi.org/10.3389/fbioe.2021.683520
Naughton, K. L. and Boedicker, J. Q., Simulations to Aid in the Design of Microbes for Synthesis of Metallic Nanomaterials, ACS Synth. Biol., 10(12), 3475-3488 (2021).
https://doi.org/10.1021/acssynbio.1c00412
Navya, P. N. and Daima, H. K., Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives, Nano Converg., 3(1), 1 (2016).
https://doi.org/10.1186/s40580-016-0064-z
Nyberg, L., Turco, R. F. and Nies, L., Assessing the impact of nanomaterials on anaerobic microbial communities, Environ. Sci. Technol., 42(6), 1938-1943 (2008).
https://doi.org/10.1021/es072018g
Pangajam, A., Theyagarajan, K. and Dinakaran, K., Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode, Sens. Bio-Sens. Res., 29, 100317 (2020).
https://doi.org/10.1016/j.sbsr.2019.100317
Parani, M., Giriraj, L., Ankur, S. and Akhilesh, K G., Engineered Nanomaterials for Infection Control and Healing Acute and Chronic Wounds, ACS Appl. Mater. Interfaces, 8(16), 10049-10069 (2016).
https://doi.org/10.1021/acsami.6b00291
Prasad, R., Kumar, V., Prasad, K. S. Nanotechnology in sustainable agriculture: present concerns and future aspects, African J. Biotechnol., 13(6), 705-713 (2014).
https://doi.org/10.5897/AJBX2013.13554
Predoi, D., Rodica, V. G., Simona, L. I., Carmen, L. C. and Stefania, M. R., Application of Nanotechnology Solutions in Plants Fertilization, Intechopen, 12-40 (2020).
https://doi.org/10.5772/intechopen.91240
Pu, G., Danjuan, Z., Ling, M., Wen, H., Longwu, Z., Kechao, H., Jianxiong, L., Shuo, Q. and Shengfeng, C., Does artificial light at night change the impact of silver nanoparticles on microbial decomposers and leaf litter decomposition in streams?, Environ. Sci.: Nano, 6(6), 1728-1739 (2019).
https://doi.org/10.1039/c9en00081j
Yuting, Q., Caidie, Q., Mengmeng, C. and Sijie, L., Nanotechnology in soil remediation - applications vs. implications, Ecotoxicol. Environ. Saf., 201, 110815 (2020).
https://doi.org/10.1016/j.ecoenv.2020.110815
Raliya, R., Vinod, S., Christian, D. and Pratim, B., Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives, J. Agric. Food Chem., 66(26), 6487-6503 (2018).
https://doi.org/10.1021/acs.jafc.7b02178
Raliya, R. and Tarafdar, J. C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.), Agricultural Research, 2, 48-57 (2013).
https://doi.org/10.1007/s40003-012-0049-z
Rawat, S., Venkata, L. R. P., Ishaq, O. A., Yi, W., Jose, R. P. V. and Jorge, L. G. T., Factors affecting fate and transport of engineered nanomaterials in terrestrial environments, Curr. Opin. Environ. Sci. Health, 6, 47-53 (2018).
https://doi.org/10.1016/j.coesh.2018.07.014
Ren, G., Dawei, H., Eileen, W. C. C., Miguel, A. V. R., Paul, R. and Robert, P. A., Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33(6), 587-590 (2009).
https://doi.org/10.1016/j.ijantimicag.2008.12.004
Sadowska, B. I. and Bartosz, G., Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases, J. Nanobiotechnol., 16(1), 87 (2018).
https://doi.org/10.1186/s12951-018-0412-8
Salem, S. S. and Husen, A., Effect of engineered nanomaterials on soil microbiomes and their association with crop growth and production, Husen, A. (Ed.), Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management, Academic Press, 311-336 (2023).
https://doi.org/10.1016/b978-0-323-91933-3.00010-6
Sampathkumar, K., Tan, K. X., Loo, S. C. J., Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers, iScience, 23(5), 101055 (2020).
https://doi.org/10.1016/j.isci.2020.101055
Shang, L., Nienhaus, K. and Nienhaus, G. U., Engineered nanoparticles interacting with cells: size matters, J Nanobiotechnol., 12(1), 5 (2014).
https://doi.org/10.1186/1477-3155-12-5
Simonin, M. and Richaume, A., Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environ. Sci. Pollut. Res. Int., 22(18), 13710-13723 (2015).
https://doi.org/10.1007/s11356-015-4171-x
Sobhanipoor, M. H., Roya, A., Hossein, H. N. and Fereshteh, S., Determination of efflux activity in Enterococci by Hoechst accumulation assay and the role of zinc oxide nanoparticles in inhibition of this activity, BMC Microbiol., 22(1), 195 (2022).
https://doi.org/10.1186/s12866-022-02595-x
Stegemeier, J. P., Avellan, A. and Lowry, G. V., Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms, Environ. Sci. Technol., 51(21), 12114-12122 (2017).
https://doi.org/10.1021/acs.est.7b02972
Suazo, H. J., Arancibia, M. N., Mlih, R., Cáceres, J. L., Bolan, N. and Mora, M. d. l. L., Impact on Some Soil Physical and Chemical Properties Caused by Metal and Metallic Oxide Engineered Nanoparticles: A Review, Nanomater., 13(3), 1-15 (2023).
https://doi.org/10.3390/nano13030572
Sun, C., Ke, H., Dashuai, M., Zhijun, W. and Xiuxia, Y., The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities, Microorganisms, 10(10), 2080 (2022).
https://doi.org/10.3390/microorganisms10102080
Suresh, A. K., Pelletier, D. A. and Doktycz, M. J. Relating nanomaterial properties and microbial toxicity, Nanoscale, 5(2), 463-474 (2013).
https://doi.org/10.1039/c2nr32447d
Tang, M., Shuo, L., Lan, W., Zhaohua, H., Jing, Q. and Liang, L., Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota?, Front. Immunol., 12, 684605 (2021).
https://doi.org/10.3389/fimmu.2021.684605
Tong, Z., Marianne, B., Loring, N., Bruce, A. and Ronald, F. T., Impact of fullerene (C60) on a soil microbial community, Environ. Sci. Technol., 41(8), 2985-2991 (2007).
https://doi.org/10.1021/es061953l
Tsang, M. K., Wong, Y. T. and Hao, J., Cutting‐Edge Nanomaterials for Advanced Multimodal Bioimaging Applications, Small Methods, 2(1), 1700265 (2017).
https://doi.org/10.1002/smtd.201700265
Umair, A., Muhammad, N. S., Fatima, B., Sammina, M., Ghulam, M. M., Muhammad, A., Muhammad, A. and Hummera, N., Application of nanomaterials in agriculture, Chauhan, N. S., Gill, S. S. (Eds.), The Impact of Nanoparticles on Agriculture and Soil, Academic Press, 259-283 (2023).
https://doi.org/10.1016/b978-0-323-91703-2.00011-7
Ur, R. H., Qaswar, M., Uddin, M., Giannini, C., Herrera, M. L. and Rea, G., Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture, Nanomater., 11(8), 2068 (2021).
https://doi.org/10.3390/nano11082068
Urnukhsaikhan, E., Bum, E. B., Aminaa, G., Nominchimeg, S. and Tsogbadrakh, M. O., Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus, Sci. Rep., 11(1), 21047 (2021).
https://doi.org/10.1038/s41598-021-00520-2
Usman, M., Muhammad, F., Abdul, W., Ahmad, N., Sardar, A. C., Hafeez, U. R., Imran, A. and Muhammad, S., Nanotechnology in agriculture: Current status, challenges and future opportunities, Sci. Total Environ., 721, 137778 (2020).
https://doi.org/10.1016/j.scitotenv.2020.137778
Vera, R. I., Edgar, V. N., Laura, E. C., Diana, I. A. B., José, H. V. S., Jessica, D. V. G., Biointeractions of plants–microbes–engineered nanomaterials, La Rosa, G. D., Peralta-Videa, J. R. (Eds.), Physicochemical Interactions of Engineered Nanoparticles and Plants, Academic Press, 201-231 (2023).
https://doi.org/10.1016/b978-0-323-90558-9.00001-2
Walkey, C. D., Jonathan, B. O., Hongbo, G., Andrew, E. and Warren, C. W. C., Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake, J. Am. Chem. Soc., 134(4), 2139-2147 (2012).
https://doi.org/10.1021/ja2084338
Wang, Y., Bian, Z. and Wang, Y. Biofilm formation and inhibition mediated by bacterial quorum sensing, Appl. Microbiol. Biotechnol., 106(19-20), 6365-6381 (2022).
https://doi.org/10.1007/s00253-022-12150-3
Wojcieszek, J. and Ruzik, L., Uptake, Accumulation, and Transformation of Metal-based Nanoparticles in Plants: Interaction of Nanoparticles with Environmental Pollutants, Environ. Nanopollutants, 9, 260 (2022).
https://doi.org/10.1039/9781839166570-00260
Wu, F., Shuo, J., Jing, H., Xinyi, W., Bin, W., Guofeng, S., Yu, Y., Shu, T. and Xilong, W., Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities, J. Hazard. Mater., 410, 124550 (2021a).
https://doi.org/10.1016/j.jhazmat.2020.124550
Wu, S., Gaillard, J. F. and Gray, K. A. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review, Sci. Total Environ., 780, 146496 (2021b).
https://doi.org/10.1016/j.scitotenv.2021.146496
Xiao, J., Juan, H., Mingyu, W., Minjie, H. and Ying, W., The fate and long-term toxic effects of NiO nanoparticles at environmental concentration in constructed wetland: Enzyme activity, microbial property, metabolic pathway and functional genes, J. Hazard. Mater., 413, 125295 (2021).
https://doi.org/10.1016/j.jhazmat.2021.125295
Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q. and Chu, C. H., The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry, Int. J. Nanomedicine., 15, 2555-2562 (2020).
https://doi.org/10.2147/IJN.S246764
You, D. J. and Bonner, J. C., Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials, Int. J. Mol. Sci., 21(19), 7310 (2020).
https://doi.org/10.3390/ijms21197310
Huali, Y., Guangfei, L., Ruofei, J., Jing, W. and Jiti, Z., Facilitated Fe(II) Oxidation but Inhibited Denitrification by Reduced Graphene Oxide during Nitrate-Dependent Fe(II) Oxidation, ACS Earth Space Chem., 3(8), 1594-1602 (2019).
https://doi.org/10.1021/acsearthspacechem.9b00093
Zhang, H., Min, H., Wenhui, Z., Jorge, L. G. T., Jason, C. W., Rong, J. and Lijuan, Z., Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils, Environ. Sci. Technol., 54(6), 3334-3342 (2020a).
https://doi.org/10.1021/acs.est.9b07562
Zhang, Q. and Zhang, C., Chronic Exposure to Low Concentration of Graphene Oxide Increases Bacterial Pathogenicity via the Envelope Stress Response, Environ. Sci. Technol., 54(19), 12412-12422 (2020).
https://doi.org/10.1021/acs.est.0c04538
Zhang, W., Xiaorong, J., Si, C., Jing, W., Rong, J. and Lijuan, Z., Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants, Environ. Pollut., 267, 115608 (2020b).
https://doi.org/10.1016/j.envpol.2020.115608
Zhang, X., Ma, G. and Wei, W., Simulation of nanoparticles interacting with a cell membrane: probing the structural basis and potential biomedical application, NPG Asia Mater., 13(1), 52 (2021).
https://doi.org/10.1038/s41427-021-00320-0
Zhao, L., Huiling, Z., Jason, C. W., Xiaoqiang, C., Hongbo, L., Xiaolei, Q. and Rong, J., Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways, Environ. Sci.: Nano, 6(6), 1716-1727 (2019).
https://doi.org/10.1039/c9en00137a
Zheng, X., Yinglong, S., Yinguang, C., Rui, W., Mu, L., Haining, H. and Xu, L., Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle, Sci. Rep., 6, 27748 (2016).
https://doi.org/10.1038/srep27748
Zhou, L., Yue, Z. Z., Yongze, G. G., Xuan, Z. Z. and Jianyi, P., Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation, Front. Microbiol., 11, 589640 (2020).