Intelligent Cold Chain Security: Nano Power Temperature Sensors, ESP32 and Telegram Bot Integration for Temperature Assurance and Environmental Harm Prevention
J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 17-25
Abstract
The research aims to create a robust cold storage monitoring system for trucks, focusing on parameters like temperature, humidity, and harmful gases. Using nano power temperature, humidity, gas and LDR sensors, the system sets predefined thresholds for each parameter. The MS1089A features energy harvesting and a long battery life. The MS1089A has an I2C interface in addition to other time and power-saving features and it is accurate (±3 °C). By monitoring the temperature and safeguarding the surrounding environment, the nano power temperature sensor is ideal for environmental monitoring. When exceeded or fallen below, automatic notifications with GPS location are sent through Telegram to relevant authorities. Bidirectional communication via a Telegram bot allows users to remotely query sensor values. GPS technology enables live tracking for better cold storage unit management during transportation. The research is scalable, highlighting the potential of IoT in enhancing operational efficiency and reducing risks in cargo transportation. In summary, it integrates wireless sensors, an ESP32 microcontroller and Telegram messaging for a comprehensive cold storage monitoring solution, ensuring the safe transport of temperature-sensitive cargo.
Full Text
Reference
Badia-Melis, R., Mc Carthy, U., Ruiz-Garcia, L., Garcia-Hierro, J. and Villalba, J. R., New trends in cold chain monitoring applications - A review, Food Control, 86, 170-182 (2018).
http://dx.doi.org/10.1016/j.foodcont.2017.11.022
Babiuch, M., Foltynek, P. and Smutny, P., Using the ESP32 microcontroller for data processing, 2019 20th International Carpathian Control Conference (ICCC), 1-6 (2019).
https://doi.org/10.1109/CarpathianCC.2019.8765944
Behdani, B., Fan, Y. and Bloemhof, J. M., Cool chain and temperature-controlled transport, An overview of concepts, challenges, and technologies, Academic Press, 167-183 (2019).
https://doi.org/10.1016/B978-0-12-813411-5.00012-0
Cahyono, F. Y. A., Suharto, N. and Mustafa, L. D., Design and build a home security system based on an ESP32 cam microcontroller with telegram notification, J. Telecommun. Netw., 12(2), 58-64 (2022).
Chu, J. O., Jeong, H. S., Park, J. P., Park, K., Kim, S. K., Yi, H. and Choi, C. H., Capsule-based colorimetric temperature monitoring system for customizable cold chain management, Chem. Eng. J., 455, 140753 (2023).
https://doi.org/10.1016/j.cej.2022.140753
Chukwu, O. A., and Adibe M., Quality assessment of cold chain storage facilities for regulatory and quality management compliance in a developing country context, Int. J. Health Plann. Manage., 37(2), 930-943 (2022).
https://doi.org/10.1002/hpm.3385
Das, G., Patra, J. K., Paramithiotis, S. and Shin, H. S., The sustainability challenge of food and environmental nanotechnology: Current status and imminent perceptions, Int. J. Environ. Res. Public Health, 16(23), 1-21 (2019).
https://doi.org/10.3390/ijerph16234848
Gangwar, A., Singh, S., Mishra, R. and Prakash, S., The State-of-the-Art in Air Pollution Monitoring and Forecasting Systems Using IoT, Big Data, and Machine Learning, Wireless Pers. Commun., 130(3), 1699-1729 (2023).
https://doi.org/10.1007/s11277-023-10351-1
Gillespie, J., da Costa, T. P., Cama-Moncunill, X., Cadden, T., Condell, J., Cowderoy, T. and Ramanathan, R., Real-Time Anomaly Detection in Cold Chain Transportation Using IoT Technology, Sustainability, 15(3), 2255 (2023).
https://doi.org/10.3390/su15032255
Gogou, E., Katsaros, G., Derens, E., Alvarez, G. and Taoukis, P. S., Cold chain database development and application as a tool for the cold chain management and food quality evaluation, Int. J. Refrig., 52, 109-121 (2015).
https://doi.org/10.1016/j.ijrefrig.2015.01.019
Huang, W., Wang, X., Zhang, J., Xia, J. and Zhang, X., Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics, Food Control, 145, 109496 (2023).
https://doi.org/10.1016/j.foodcont.2022.109496
Hui, T. K., Donyai P., McCrindle, R. and Sherratt, R. S., Enabling medicine reuse using a digital time temperature humidity sensor in an internet of pharmaceutical things concept, Sens., 20(11), 1-24 (2020).
https://doi.org/10.3390/s20113080
Kartoglu, U. and Milstien, J., Tools and approaches to ensure quality of vaccines throughout the cold chain, Expert Rev. Vaccines., 13(7), 843-854 (2014).
https://doi.org/10.1586/14760584.2014.923761
Lorite, G. S., Selkala, T., Sipola, T., Palenzuela, J., Jubete, E., Vinuales, A. and Toth, G., Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring, J. Food Eng., 193, 20-28 (2017).
http://dx.doi.org/10.1016/j.jfoodeng.2016.06.016
Luo, H., Zhu, M., Ye, S., Hou, H., Chen, Y. and Bulysheva, L., An intelligent tracking system based on internet of things for the cold chain, Internet Res., 26(2), 435-445 (2016).
http://dx.doi.org/10.1108/IntR-11-2014-0294
Manzini, R., Accorsi, R., Bortolini, M. and Gallo, A., Quality assessment of temperature-sensitive high-value food products: An application to Italian fine chocolate distribution, Sustainable Food Supply Chains, 201-217 (2019).
http://dx.doi.org/10.1016/B978-0-12-813411-5.00014-4
Mayasari, D., Syaifudin, S., Titisari, D. and Triwiyanto, T., Temperature Distribution Monitoring on Blood Bank Chamber Using Android Application on Mobile Phone, Journal Teknokes, 16(1), 14-20 (2023).
https://doi.org/10.35882/teknokes.v16i1.506
Megantoro, P., Aldhama, S. A., Prihandana, G. S. and Vigneshwaran, P., IoT-based weather station with air quality measurement using ESP32 for environmental aerial condition study, Telecommunication Computing Electronics and Control, 19(4), 1316-1325 (2021).
https://doi.org/10.12928/TELKOMNIKA.v19i4.18990
Mohan, A., Krishnan, R., Arshinder, K., Vandore, J. and Ramanathan, U., Management of postharvest losses and wastages in the Indian tomato supply chain a temperature-controlled storage perspective, Sustainability, 15(2), 1331 (2023).
https://doi.org/10.3390/su15021331
Montanari, R., Cold chain tracking: a managerial perspective, Trends Food Sci. Technol., 19(8), 425-431 (2008).
https://doi.org/10.1016/j.tifs.2008.03.009
Nobari, A. D., Sarraf, M. H. K. M., Neshati, M. and Daneshvar, F. E., Characteristics of viral messages on Telegram; The world’s largest hybrid public and private messenger, Expert Syst. Appl., 168, 114303 (2021).
https://doi.org/10.1016/j.eswa.2020.114303
Qi, T., Ji, J., Zhang, X., Liu, L., Xu, X., Ma, K. and Gao, Y., Research progress of cold chain transport technology for storage fruits and vegetables, J. Energy Storage, 56, 105958 (2022).
https://doi.org/10.1016/j.est.2022.105958
Shou, W., Wang, Y., Yao, Y., Chen, L., Lin, B., Lin, Z. and Guoa, L., A two-dimensional disposable full-history time-temperature indicator for cold chain logistics, Anal. Chim. Acta, 1237, 340618 (2023).
https://doi.org/10.1016/j.aca.2022.340618
Sivashankar, R., Sathya, A. B., Vasantharaj, K. and Sivasubramanian, V., Magnetic composite an environmental super adsorbent for dye sequestration – A review, Environ. Nanotechnol. Monit. Manage., 2, 36-49 (2014).
https://doi.org/10.1016/j.enmm.2014.06.001
Tang, X., Tan, C., Chen, A., Li, Z. and Shuai, R., Design and implementation of temperature and humidity monitoring system for small cold storage of fruit and vegetable-based on Arduino, J. Phys. Conf. Ser., 1601(6), 062010 (2020).