Anticancer and Antibacterial Evaluation of Pure Poly(o-Toluidine) for Tissue Engineering and Cancer Treatment
J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 10-16
Abstract
Chemical oxidative polymerization was employed to synthesize pure poly (ortho-toluidine) (POT). The synthesized POT was characterized using XRD, FT-IR, and SEM analyses. Additionally, the samples were subjected to biological evaluation. The antibacterial activity of POT was tested against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. Notably, E. coli displayed significant susceptibility to POT's antibacterial effects, especially at higher concentrations. Furthermore, in vitro anticancer experiments were conducted on MG-63 bone cancer cells to assess the cytotoxicity of POT. Pristine POT exhibited the highest level of cytotoxicity, as evidenced by an IC50 value of 83.15 g/ml. In summary, this investigation highlights the robust antibacterial and anticancer activities of POT. These findings suggest potential applications of POT in areas such as tissue engineering scaffolds, anticancer therapies, and various biomedical uses.
Full Text
Reference
Ahmed, M. Y., Hesham, A. M., Ahmed, B., Abou, E. F. A. A. H. and Alain, D., Evaluation of the Morphological, Electrical and Antibacterial Properties of Polyaniline Nanocomposite Based on Zn/Al-Layered Double Hydroxides, Chem. Select, 2(27), 8553-8566 (2017).
https://doi.org/10.1002/slct.201701513
Bagheri, N., Mansour, L. M., Nabavi, S. R., Tashakkorian, H. and Mohseni M., Synthesis of bioactive polyaniline-b-polyacrylic acid copolymer nanofibrils as an effective antibacterial and anticancer agent in cancer therapy, especially for HT29 treatment, RSC Adv., 10(42), 25290-25304 (2020).
https://doi.org/10.1039/D0RA03779F
Boomi, P., Poorani, G. P., Palanisamy, S., Selvam, S., Ramanathan, G., Ravikumar, S., Hamed, B., Halliah, G. P., Jeyaraman, J., Saravanan, M., J. Clust. Sci., 30, 715-726 (2019).
https://doi.org/10.1007/s10876-019-01530-x
Borriello, A., Guarino, V., Schiavo, L. and Alvarez, P. M. A. and Ambrosio, L., Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle, J. Mater. Sci. Mater. Med., 22(4), 1053-1062 (2011).
https://doi.org/10.1007/s10856-011-4259-x
David, N. A., The Pharmacology of Dimethyl Sulfoxide, Annu. Rev. Pharmacol., 12, 353–374 (1972).
https://doi.org/10.1146/annurev.pa.12.040172.002033
De, G. E., Sabbatini, L. and Zambonin, P. G., Development and analytical characterization of cysteine-grafted polypyrrole films electrosynthesized on Ptand Ti-substrates as precursors of bioactive interfaces, J. Biomater. Sci. Polym. Ed., 10(8), 845-858 (1999).
https://doi.org/10.1163/156856299X00919
Ebrahim, S. M., Gad, A. and Morsy, A., Highly crystalline and soluble dodecylbenzene sulfonic acid doped poly(o-toluidine), Synth. Met., 160(23-24), 2658-2663 (2010).
https://doi.org/10.1016/j.synthmet.2010.10.021
Fernandes, E. G. R., Zucolotto, V. and De, Queiroz, A. A. A., Electrospinning of Hyperbranched Poly-L-Lysine/Polyaniline Nanofibers for Application in Cardiac Tissue Engineering, J. Macromol. Sci. A, 47(12), 1203-1207 (2010).
https://doi.org/10.1080/10601325.2010.518847
Futaki, S., Hirose, H. and Nakase, I., Arginine-rich peptides: methods of translocation through biological membranes, Curr. Pharm. Des., 19(16), 2863–2868 (2013).
https://doi.org/10.2174/1381612811319160003
Garner, B., Georgevich, A., Hodgson, A. J., Liu, L. and Wallace, G. G., Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth, J. Biomed. Mater. Res., 44(2), 121-129 (1999).
https://doi.org/10.1002/(sici)1097-4636(199902)44: 2%3C121: :aid-jbm1%3E3.0.co;2-a
Ghosh, P. and Siddhanta, S. K., Studies on stable aqueous poly(o-toluidine) prepared with the use of a water-soluble support polymer, polyacrylamide, J. Polym. Sci., Part A-1: Polym. Chem., 37(16), 3243-3256 (1999).
https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16%3C3243::AID-POLA22%3E3.0.CO;2-6
Gizdavic, N. M. R., Bennett, J., Zujovic, Z., Swift, S. and Bowmaker, G. A., Characterization and antimicrobial efficacy of acetone extracted aniline oligomers, Synth. Met., 162(13-14), 1114–1119 (2012).
http://dx.doi.org/10.1016/j.synthmet.2012.04.031
Hathout, R. M., Metwally, A. A., El-Ahmady, S. H., Metwally, E. S., Ghonim, N. A., Bayoumy, S. A., Tarek, E., Rosaline, A., Maha, F., Abdullah, I. E. K. and Hardy, J. G., Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy, J. Drug Deliv. Sci. Technol., 47, 176-180 (2018).
https://doi.org/10.1016/j.jddst.2018.07.002
Huang, K. S., Yang, C. H., Huang, S. L., Chen, C. Y., Lu, Y. Y. and Lin, Y. S., Recent Advances in Antimicrobial Polymers: A Mini-Review, Int. J. Mol. Sci, 17(9), 1578(1-14 (2016).
https://doi.org/10.3390/ijms17091578
Humpolicek, P., Kasparkova, V., Pachernik, J., Stejskal, J., Bober, P., Capakova, Z., Katarzyna, A. R., Ita, J. and Lehocky, M., The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile, Mater. Sci. Eng. C, 91, 303-310 (2018).
https://doi.org/10.1016/j.msec.2018.05.037
Humpolicek, P., Kasparkova, V., Saha, P. and Stejskal, J., Biocompatibility of polyaniline, Synth. Met. 162(7-8), 722-727 (2012).
https://doi.org/10.1016/j.synthmet.2012.02.024
Jakubiec, B., Marois, Y., Zhang, Z., Roy, R., Sigot, L. M. F., Dugre, F. J., King, M. W., Dao, L. H., Laroche, G. and Guidoin, R., In vitro cellular response to polypyrrole-coated woven polyester fabrics: potential benefits of electrical conductivity, J. Biomed. Mater. Res., 41, 519 -526 (1998).
https://doi.org/10.1002/(sici)1097-4636(19980915)41:4%3C519::aid-jbm2%3E3.0.co;2-f
Kotwal, A. and Schmidt, C. E., Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials, Biomater., 22(10), 1055-1064 (2001).
https://doi.org/10.1016/s0142-9612(00)00344-6
Kulkarni, M. V., Viswanath, A. K. and Mulik, U. P., Studies on chemically synthesized organic acid doped poly(o-toluidine), Mater. Chem. Phys., 89(1), 1-5 (2005).
https://doi.org/10.1016/j.matchemphys.2004.01.031
Lakshmi, G. B. V. S., Ali, V., Kulriya, P., Siddiqui, A. M., Husain, M. and Zulfequar, M., Electrical and spectroscopic characterization of p-toluene sulfonic acid doped poly(o-toluidine) and poly(o-toluidine) blends, Phys. Rev. B Condens. Matter., 392(1-2), 259-265 (2007).
https://doi.org/10.1016/j.physb.2006.11.045
Madhu, S. G., Thenmozhi, G., Jayakumar, D. and Jaya, S. R., Synthesis, characterization and biological applications of conducting poly o-toludine in the absence and in the presence of ultrasonic irradiation, J. Chem. Pharm. Res., 4(1), 491-500 (2012).
McKeon, K. D., Lewis, A. and Freeman, J. W., Electrospun poly(D,L-lactide) and polyaniline scaffold characterization, J. Appl. Polym. Sci., 115(3), 1566-1572 (2010).
https://doi.org/10.1002/app.31296
Namsheer, K. and Chandra, S. R., Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications, RSC Adv., 11(10), 5659-5697 (2021).
https://doi.org/10.1039/D0RA07800J
Notman, R., Noro, M., O’Malley, B. and Anwar, J., Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes, J. Am. Chem. Soc., 128(43), 13982–13983 (2006).
https://doi.org/10.1021/ja063363t
Pande, N., Jambhale, A., Purohit, V., Jaspal, D., Ambekar, J. and Chauhan, N. P. S., Poly(o-Toluidine)-Li Nanocomposite: Facile Preparation and Utilization in Energy Storage Devices, Polym. Plast. Technol. Mater., 60 (2), 208-216 (2020).
https://doi.org/10.1080/25740881.2020.1793199
Parthiban, E., Kalaivasan, N. and Sudarsan, S., A study of magnetic, antibacterial and antifungal behaviour of a novel gold anchor of polyaniline/itaconic acid/Fe3O4 hybrid nanocomposite: Synthesis and characterization Arab. J. Chem., 13(3), 4751-4763 (2020).
https://doi.org/10.1016/j.arabjc.2019.12.002
Reddy, K. R., Lee, K. P., Lee, Y. and Gopalan, A. I., Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles, Mater. Lett., 62(12-13), 1815-1818 (2008).
https://doi.org/10.1016/j.matlet.2007.10.025
Schmidt, C. E., Shastri, V. R., Vacanti, J. P. and Langer, R., Stimulation of neurite outgrowth using an electrically conducting polymer, Proc. Natl. Acad. Sci. USA, 94(17), 8948-8953 (1997).
https://doi.org/10.1073/pnas.94.17.8948
Seshadri, D. T. and Bhat, N. V., Structural and electrical properties of crystals of substituted polyaniline, J. Polym. Sci. B Polym. Phys., 45(10), 1127-1137 (2007).
https://doi.org/10.1002/polb.21158
Tamilselvi, D., Velmani, N. and Rathidevi, K., Electrical Conductivity Studies of Zinc Oxide, Nickel Doped Zinc Oxide Poly (O-Toluidine) Nanocomposite Using Chemical Oxidative Polymerization, Egypt. J. Chem., 62 (2), 785-795 (2019).
https://doi.org/10.21608/ejchem.2019.14744.1897
Wang, L. P., Wang, W., Di, L., Lu, Y. N. and Wang, J. Y., Protein adsorption under electrical stimulation of neural probe coated with polyaniline, Colloids Surf. B., 80(1), 72-78 (2010).
https://doi.org/10.1016/j.colsurfb.2010.05.034
Wang, Z., Roberge, C., Wan, Y., Dao, L. H., Guidoin, R. and Zhang, Z., A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: A preliminary in vitro biostability study, J. Biomed. Mater. Res., 66A(4), 738-746 (2003).
https://doi.org/10.1002/jbm.a.10037
Williams, A. C. and Barry, B. W., Penetration enhancers, Adv. Drug. Deliv. Rev., 56(5), 603–618 (2004).
https://doi.org/10.1016/j.addr.2003.10.025
Wong, J. Y., Langer, R. and Ingber, D. E., Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells, Proc. Natl. Acad. Sci. USA, 91(8), 3201-3204 (1994).
https://doi.org/10.1073/pnas.91.8.3201
Wu, C. S., Preparation and characterization of an aromatic polyester/polyaniline composite and its improved counterpart, Express Polym. Lett., 6(6), 465-475 (2012).