Open Access

Incorporation of Nano Selenium in Fish Diet and Assessment of Growth Performance and Biochemical Criteria of Labeo rohita

M. Dayana Senthamara, Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, TN, India M. Rekha, Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, TN, India M. R. Rajan mrrrajanbio@gmail.com
Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, TN, India


J. Environ. Nanotechnol., Volume 13, No 1 (2024) pp. 01-09

https://doi.org/10.13074/jent.2024.03.234490

PDF


Abstract

Selenium (Se) is an essential microelement utilized in aqua-feeds for aquatic animals’ normal growth, well-being and health. This work was intended to assess the growth performance of Labeo rohita (Rohu) resulting from the nano Se-merged diet. Nano Se was synthesized and its physico-chemical characteristics were characterized using UV-VIS, SEM, EDAX, XRD and FTIR for varying quantities of nano Se; Diets - I-0, II- 0.5, III-1, IV-1.5, V-2 and VI- 2.5 mg/ kg were prepared, making use of fish meal (FM), groundnut oil cake (GNOC), wheat flour (WF) and tapioca flour (TF). Feed-utilizing parameters and the biochemical composition of Rohu were evaluated subsequently after 28 days. The UV-Vis Spectroscopy revealed that nano Se was assessed in wavelengths of 200 to 500 nm and exhibited strong absorption at 322 nm. SEM image showed spherical morphology with an average particle diameter of 12.22 mm. EDAX spectrum recorded two signals at 1.5 keV and 11 keV. XRD patterns showed crystalline characteristics of nano Se at 2θ correlators of 23.5o, 29.7o, 41.4o, 43.6o, 45.4o, 51.7o, 55.9o and 61.5o. FTIR spectrum was examined in the range of 4000 – 500 cm-1. Rohu's growth performance and biochemical analysis revealed that the protein, carbohydrate and lipids of gill, liver and muscle of Rohu were highly increased in the case of diet IV containing 1.5 mg/kg nano Se.

Full Text

Reference


Ashouri, S., Keyvanshokooh, S., Salati, A. P., Johari, S. A., Pasha-Zanoosi, H., Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio), Aquac., 446, 25-29 (2015).

https://doi.org/10.1016/J.AQUACULTURE.2015.04.021

Atencio, L., Moreno, I., Jos, A., Prieto, A. I., Moyano, R., Blanco, A., Camean, A. M., Effects of dietary selenium on the oxidative stress and pathological changes in tilapia (Oreochromis niloticus) exposed to a microcystin-producing cyanobacterial water bloom, Toxicon., 53(2), 269–282 (2009).

https://doi.org/10.1016/j.toxicon.2008.11.011

Baskar, G., Lalitha, K., and George, G. B., Synthesis, characterization and anticancer activity of selenium nano biocomposite of l-asparaginase, Bull. Mater. Sci., 42(1), 1-7 (2019).

https://doi.org/10.1007/s12034-018-1686-z

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F., and Baeza A., The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine, Mol., 25, 112 (2020).

https://doi.org/10.3390/molecules25010112

Bisht, N., Phalswal, P., Khanna, P. K., Selenium nanoparticles: A review on synthesis and biomedical applications, Mat. Adv., 3(3), 1415-1431 (2023).

https://doi.org/10.1039/D1MA00639H

Gabriel, N. N., Habte-Tsion, H. M. and Haulofu, M., Perspectives of Nanotechnology in Aquaculture: Fish Nutrition, Disease, and Water Treatment, Nanotechnol. Sci. appl., 463-485 (2022.).

https://doi.org/10.1007/978-3-030-80371-1_15

Gao, X., Li, X., Mu, J., Ho, C. T., Su, J., Zhang, Y., Lin, X., Chen, Z., Li, B. and Xie, Y., Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide, Int. J. Biol. Macromol., 152, 605-615 (2020).

https://doi.org/10.1016/j.ijbiomac.2020.02.199

Ghaniem, S., Nassef, E., Zaineldin, A. I., Bakr, A. and Hegazi, S., A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol. Trace Elem. Res., 200(12), 5226–5241 (2022).

https://doi.org/10.1007/s12011-021-03075-5

Khan, M. Z. H., Hossain, M. M. M., Khan, M., Ali, M. S., Aktar, S., Moniruzzaman M. and Khan, M., Influence of nanoparticle-based nano-nutrients on the growth performance and physiological parameters in tilapia (Oreochromis niloticus), Res. Adv., 10(50), 29918–29922 (2020).

https://doi.org/10.1039/d0ra06026g

Kim, J. H. and Kang, J. C., The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium, Ecotoxicol. Environ. Saf., 104(1), 96–102 (2014).

https://doi.org/10.1016/J.ECOENV.2014.02.010

Kohshahi, A. J., Sourinejad, I., Sarkheil, M. and Johari, S. A., Dietary co-supplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss), Fish Physiol. Biochem, 45(2), 793–804 (2019).

https://doi.org/10.1007/s10695-018-0585-y

Kumar, N., Krishnani, K. K., Gupta, S. K., Sharma, R., Baitha, R., Singh, D. K., Singh, N. P., Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus, Fish Shellfish Immunol., 78, 289–298 (2018).

https://doi.org/10.1016/J.FSI.2018.04.051

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193(1), 265-275 (1951).

Malhotra, S., Jha, N. and Desai, K., A superficial synthesis of selenium nanospheres using a wet chemical approach, Int. J. Nanotechnol. Appl., 3(4), 7–14 (2014).

Moges, F. D., Hamdi, H., Al-Barty, A., Zaid, A. A., Sundaray, M., Parashar, K. S., Gubale, A. G., and Das, B., Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile Tilapia, Oreochromis niloticus. PLoS ONE., 17(6), 1-19 (2022).

https://doi.org/10.1371/journal.pone.0268348

Rajan, M. R., and Pavithra, P., Different quantities of copper oxide nanoparticles incorporated feed on growth and haematological parameters Tilapia Oreochromis mossambicus, GSC Biol. Pharm. Sci., 22(1), 205–214 (2023).

https://doi.org/10.30574/gscbps.2023.22.1.0037

Muralisankar, T., Saravana Bhavan, P., Radhakrishnan, S., Seenivasan, C., Manickam, N. and Srinivasan V., Effects of dietary zinc on the growth, digestive enzymes activities, muscle biochemical compositions and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii. Aquacul, 448, 98-104 (2016).

https://doi.org/10.1016/j.aquaculture.2015.05.045

Nemati, T., Johari, S. A., and Sarkheil M., Will the antimicrobial properties of ZnONPs turn it into a more suitable option than AgNPs for water filtration? Comparative study in the removal of fish pathogen, Aeromonas hydrophila from the culture of juvenile common carp (Cyprinus carpio), Environ. Sci. Pollut. Res., 26(30), 30907–30920 (2019).

https://doi.org/10.1007/s11356-019-06178-8

Pavithra, K., Darthiqueen, P., Karthik, M., and Ramasubramanian, V., Effect of dietary selenium nanoparticles (SeNPs) on growth, haematology, protein profile, immune response, and E. coli bacteria challenged on Rohu, Labeo rohita, Int. J. Multidiscip. Educ. Res., 10(4), 58-65 (2021).

Prasad, K. S., Patel, H., Patel, T., Patel, K., and Selvaraj, K., Biosynthesis of Se Nanoparticles and Its Effect on UV-Induced DNA Damage, Colloids and Surf. B., 103, 261–266 (2013).

https://doi.org/10.1016/j.colsurfb.2012.10.029

Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S. A. and Pasha-Zanoosi H., Effects of different dietary selenium sources (sodium selenite, selenomethionine and nano selenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio), Aquac. Nutr., 23(3), 611–617 (2017).

https://doi.org/10.1111/anu.12428

Senthamarai, M. D. and Rajan, M. R., Comparative Study of Green and Chemical Synthesized Selenium Nanoparticles and Its Antibacterial Assay Against Fish Pathogens, J. Nanosci. Technol., 9, 981–985 (2023).

https://doi.org/10.30799/jnst.343.23090401

Shahabadi, N., Zendehcheshm, S., and Khademi, F., Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins, Biotechnol. Rep., 30, 1-21 (2021).

https://doi.org/10.1016/j.btre.2021.e00615

Shar, A. H., Lakhan, M. N., Wang, T., Ahmed, M., Alali, K. T., Ahmed, R., Alid, I., and Dayo, A. Q., Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach, Dig. J. Nanomat. Biostructures., 14(4), 867-872 (2019).

Sheikh, S., Fariborz Ghojaghi Ghelichi, A. and Jorjani, S., Dietary Effects of Selenium Nanoparticles on Growth Performance, Survival Rate, Chemical Composition, and Muscle Bioaccumulation of Nile Tilapia, Biol. Trace Elem. Res., (2011).

https://doi.org/10.1007/s12011-023-03836-4

Shubharani, R., Mahesh, M., and Yogananda Murthy, V. N., Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of Bee Propolis, J. Nanosci Nanotech., 10(1), 1-7 (2019).

https://doi.org/10.4172/2157-7439.1000522

Singh, R. S., Shivananda, M. H., Abdullah-Al, M. M., Nasren, S., Rakesh, K., Thammegowda, N. Kumar, B., Ballyaya, A. P., and Sathayanarayan, K. A., Nano-selenium Supplementation to Ameliorate Nutrition Physiology, Immune Response, Antioxidant System and Disease Resistance Against Aeromonas hydrophila in Monosex Nile Tilapia (Oreochromis niloticus), Biol. Trace Elem. Res., 199, 3073–3088 (2011).

https://doi.org/10.1007/s12011-020-02416-0

Soundhariya, N., and Rajan, M. R., Dietary Supplementation of Zinc Oxide Nanoparticles on Growth, Haematological, and Biochemical Parameters of Koi Carp Cyprinus carpio var koi, 9(3), 1-11 (2021).

Srinivasan, V., Saravana, B. P., Rajkumar, G., Satgurunathan, T. and Muralisankar, T., Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachium rosenbergii post larvae, Int. J. Fish. Aquat., 4(2), 170182 (2016).

Vahdati, M., and Tohidi, M. T., Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties, Sci. Rep., 10(1), 1-10 (2020).

https://doi.org/10.1038/s41598-019-57333-7

Wang, L., Wang, L., Zhang, D., Li, S., Yin, J., Xu, Z., and Zhang, X., Effect of dietary selenium on postprandial protein deposition in the muscle of juvenile rainbow trout (Oncorhynchus mykiss), Br. J. Nutr., 125(7), 721–731 (2021).

https://doi.org/10.1017/S000711452000313X

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS