Open Access

Catalytical Degradation of Industrial Dyes using Biosynthesized Nanoparticles - Review

K. Vallarasu, Department of Civil Engineering, Erode Sengunthar Engineering College, Erode, TN, India V. Sampathkumar, anbusampathcivil@gmail.com
Department of Civil Engineering, Kongu Engineering College, Erode, TN, India
S. Manoj, Department of Civil Engineering, Kongu Engineering College, Erode, TN, India K. Raja, Department of Civil Engineering, Sona College of Technology, Salem, TN, India V. Vijayalakshmi, Department of physics, Erode Sengunthar Engineering College, Erode, TN, India K. M. Gopalakrishnan, Department of Civil Engineering, Erode Sengunthar Engineering College, Erode, TN, India K. S. Navaneethan Department of Civil Engineering, Kongu Engineering College, Erode, TN, India


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 93-107

https://doi.org/10.13074/jent.2023.12.234489

PDF


Abstract

The rapid growth of the textile industry has led to a surge in the release of industrial dyes, posing a severe environmental threat. An attempt was made in this review paper to explore the catalytical degradation of industrial dyes using biosynthesized nanoparticles as a promising avenue for sustainable remediation and to provide a thorough understanding of the advancements, challenges and potential applications of this innovative approach. The synthesis methods of biosynthesized nanoparticles were explained, highlighting the use of natural extracts and their inherent catalytic properties. A critical analysis of the catalytic degradation process was presented, examining the diverse range of industrial dyes targeted by biosynthesized nanoparticles. The factors influencing degradation efficiency, such as nanoparticle size, composition and the nature of the dye pollutants were investigated and the kinetics and mechanisms governing catalytic degradation were explored, shedding light on the intricacies of the reaction pathways. The environmental impact and sustainability of biosynthesized nanoparticles for dye degradation were thoroughly evaluated. Comparisons with conventional remediation methods were made, emphasizing the eco-friendly nature and potential scalability of this innovative approach. Moreover, challenges and future directions in this field were outlined to guide further research efforts.

Full Text

Reference


Abdel, A. A., Barakat, M. A. and Mohamed, R. M., Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol, Appl. Surf. Sci., 254(15), 4577–4583 (2008).

https://doi.org/10.1016/j.apsusc.2008.01.049

Abou, E. N. K. M. M., Eftaiha, A., A. W. A. and Ammar, R. A. A., Synthesis and applications of silver nanoparticles, Arab, J. Chem., 3(3), 135– 40 (2010).

https://doi.org/10.1016/J.ARABJC.2010.04.008

Adams, L. K., Lyon, D. Y. and Alvarez, P. J. J., Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water. Res., 40(19), 3527–3532 (2006).

https://doi.org/10.1016/J.WATRES.2006.08.004

Al-Hamdi, A. M., Sillanpää, M. and Dutta, J., Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO2 nanoparticles, J. Mater. Sci., 49, 5151–5159 (2014).

https://doi.org/10.1007/s10853-014-8223-2

Balakumar, S., and Rakkesh, R. A., Core/shell nano- structuring of metal oxide semiconductors and their photocatalytic studies, AIP Conf. Proc., 1512(1), 34–37 (2013).

https://doi.org/10.1063/1.4790898

Bandi, V. R., Raghavan, C. M., Grandhe, B. K., Kim, S. S.,Jang, K., Shin, D. S., Yi, S. S. and Jeong, J. H., Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique, Thin Solid Films, 547, 207–211 (2013).

https://doi.org/10.1016/J.TSF.2013.03.039

Chahal, S., Singh, S., Kumar, A. and Kumar, P. Oxygen-deficient lanthanum doped cerium oxide nanoparticles for potential applications in spintronics and photocatalysis, Vacuum, 177, 1-7 (2020a).

https://doi.org/10.1016/J.VACUUM.2020.109395

Chahal, S., Rani, N., Kumar, A. and Kumar, P., Electronic structure and photocatalytic activity of samarium doped cerium oxide nanoparticles for hazardous rose bengal dye degradation, Vacuum, 172, 09075 (2020b).

https://doi.org/10.1016/J.VACUUM.2019.109075

Chahal, S., Kumar, A. and Kumar, P., Erbium-doped oxygen deficient cerium oxide: Bi-functional material in the field of spintronics and photocatalysis, Appl. Nanosci., 10, 1721–1733. (2020c).

https://doi.org/10.1007/s13204-020-01253-w

Chahal, S., Phor, L., Singh, S., Singh, A., Malik, J., Goel, P., Kumar, A., Kumar, S. and Ankita, P. K., An efficient and unique method for the growth of spindle-shaped Mg-doped cerium oxide nanorods for photodegradation of p-Nitrophenol, Ceram. Int., 48(19), 28961-28968 (2022).

https://doi.org/10.1016/j.ceramint.2022.04.145

Chahal, S., Phor, L., Kumar, A., Kumar, S., Kumar, S., Kumar, R. and Kumar, P., Enhanced photocatalytic degradation of organic dye by CeO2/CNT/GO hybrid nanocomposites under UV light for wastewater treatment, Environ. Sci. Pollut. Res., (2023).

https://doi.org/10.1007/s11356-023-26184-1

Chandran, D., Nair, L. S., Balachandran, S., Babu, R. and Deepa, M., Band gap narrowing and photocatalytic studies of Nd3+ ion-doped SnO2 nanoparticles using solar energy, Bull. Mater. Sci., 39, 27–33 (2016).

https://doi.org/10.1007/s12034-015-1142-2

Chang, Y. C., Yan, C. Y. and Wu, R. J., Preparation of Pt@SnO2 core-shell nanoparticles for photocatalytic degradation of formaldehyde, J. Chin. Chem. Soc., 61(3), 345–349. (2014).

https://doi.org/10.1002/jccs.201300272

Chen, Y. W., and Lee, D. S., Photocatalytic Destruction of Methylene Blue on Ag@TiO2 with Core/Shell Structure, Oalib., 61(3), 1–14 (2014).

https://doi.org/10.4236/oalib.1100504

Chen, N., Liu, B., Zhang, P., Wang, C., Du, Y., Chang, W. and Hong, W., Enhanced photocatalytic performance of Ce-doped SnO2 hollow spheres by a one-pot hydrothermal method, Inorg. Chem. Commun., 132, 1-10 (2021).

https://doi.org/10.1016/j.inoche.2021.108848

Chen, X., Li, J. and Chen, F., Photocatalytic degradation of MB by novel and environmental ZnO/Bi2WO6-CC hierarchical heterostructures, Mater. Character, 189, 111961 (2022).

https://doi.org/10.1016/J.MATCHAR.2022.111961

Chen, D., Zhang, Y. and Chen, H., Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin – FeOOH system for the degradation of organic, RSC Adv., 10(32), 18704–18714 (2020).

https://doi.org/10.1039/d0ra03361h

Demartis, S., Obinu, A., Gavini, E., Giunchedi, P. and Rassu, G., Nanotechnology-based Rose Bengal: A broad- spectrum biomedical tool, Dye Pigm., 188, 1-14 (2021).

https://doi.org/10.1016/J.DYEPIG.2021.109236

Devi, S., Suman, Chahal, S., Singh, S., Ankita, Kumar, P., Kumar, S., Kumar, A. and Kumar, V., Magnetic Fe2O3/CNT nanocomposites: Characterization and photocatalytic application towards the degradation of Rose Bengal dye, Ceram. Int., 49(12), 20071–20079 (2023).

https://doi.org/10.1016/j.ceramint.2023.03.130

Dharwal, M., Parashar, D., Shuaibu, M. S., Abdullahi, S. G., Abubakar, S. and Bala, B. B., Water pollution: Effects on health and environment of Dala LGA, Nigeria, Mater. Today Process, 49(12), 3036–3039 (2020).

https://doi.org/10.1016/j.matpr.2020.10.496

Duan, X., Sun, H., Ao, Z., Zhou, L., Wang, G. and Wang, S., Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation, Carbon, 107, 371–378 (2016).

https://doi.org/10.1016/j.carbon.2016.06.016

Esplugas, S., Bila, D. M., Krause, L. G. T. and Dezotti, M., Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149, 631–642. (2007).

https://doi.org/10.1016/J.JHAZMAT.2007.07.073

Farhadi, A., Mohammadi, M. R. and Ghorbani, M., On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination, J. Photochem. Photobiol., A, 338, 171–177, (2017).

https://doi.org/10.1016/j.jphotochem.2017.02.009

Farhan, H. M. and Sapawe, N., A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes, Mater. Today Process, 31, 141–150 (2020).

https://doi.org/10.1016/J.MATPR.2021.01.258

Fatima, R., Warsi, M. F., Zulfiqar, S., Ragab, S. A., Shakir, I. and Sarwar, M. I., Nanocrystalline transition metal oxides and their composites with reduced graphene oxide and carbon nanotubes for photocatalytic applications, Ceram. Int., 46(10), 16480–16492 (2020).

https://doi.org/10.1016/j.ceramint.2020.03.213

Feng, Y., Su, X., Chen, Y., Liu, Y., Zhao, X., Lu, C., Ma, Y., Lu, G. and Ma, M., Research progress of graphene oxide-based magnetic composites in adsorption and photocatalytic degradation of pollutants, A rev. Mater. Res. Bull., 162, 112207 (2023).

https://doi.org/10.1016/J.MATERRESBULL.2023.112207

Ferdosi, E., Bahiraei, H. and Ghanbari, D., Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants, Sep. Purif. Technol., 211, 35–39 (2019).

https://doi.org/10.1016/j.seppur.2018.09.054

Forgacs, E., Cserháti, T. and Oros, G., Removal of synthetic dyes from wastewaters: A review, Environ. Int., 30(7), 953–971 (2004).

https://doi.org/10.1016/J.ENVINT.2004.02.001

Fu, M., Li, Y., Wu, S., Lu, P., Liu, J. and Dong, F., Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci., 258(4), 1587–1591 (2011).

https://doi.org/10.1016/J.APSUSC.2011.10.003

Ghafuri, H., Dehghani, M., Rashidizadeh, A. and Rabbani, M., Synthesis and characterization of magnetic nanocomposite Fe3O4@TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation, Optik (stuttg)., 179, 646–653 (2019).

https://doi.org/10.1016/j.ijleo.2018.10.180

Gholami, T., Bazarganipour, M., Salavati-Niasari, M. and Bagheri, S., Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization, J. Mater. Sci.: Mater. Electron., 26, 6170–6177 (2015).

https://doi.org/10.1007/s10854-015-3198-6

Govindaraj, T., Mahendran, C., Manikandan, V. S., Archana, J. and Navaneethan, M., Enhanced visible- light-driven photocatalytic activity of Ce doped WO3 nanorods for Rhodamine B dye degradation, Mater. Lett., 305, 1-5 (2021).

https://doi.org/10.1016/J.MATLET.2021.130705

Hamad, H., Abd El-Latif, M., Kashyout, A. E. H., Sadik, W. and Feteha, M., Synthesis and characterization of core-shell-shell magnetic (CoFe2O4-SiO2-TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation, New, J. Chem., 39(4), 3116–3128 (2015).

https://doi.org/10.1039/c4nj01821d

Hao, M., Qiu, M., Yang, H., Hu, B. and Wang, X., Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760, 143333 (2021).

https://doi.org/10.1016/j.scitotenv.2020.143333

Hernández, Z. M. and Martínez, J. F., Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos, Ecotoxicol., 28, 890–902 (2019).

https://doi.org/10.1007/s10646-019-02087-1

Hethnawi, A., Nassar, N. N., Manasrah, A. D. and Vitale, G., Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column, Biochem. Eng. J., 320, 389–404 (2017).

https://doi.org/10.1016/J.CEJ.2017.03.057

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M. and Pandit, A. B., A critical review on textile wastewater treatments: Possible approaches, J. Environ. Manage., 182, 351–366 (2016).

https://doi.org/10.1016/J.JENVMAN.2016.07.090

Hosseini, Z. S., Haghparast, F., Masoudi, A. A. and Mortezaali, A., Enhanced visible photocatalytic performance of un-doped TiO2 nanoparticles thin films through modifying the substrate surface roughness, Mater. Chem. Phys., 279, 125530 (2022).

https://doi.org/10.1016/J.MATCHEMPHYS.2021.125530

Huang, D., Yan, X., Yan, M., Zeng, G., Zhou, C., Wan, J., Cheng, M. and Xue, W., Graphitic carbon nitride- based heterojunction photoactive nanocomposites: Applications and mechanism insight, ACS Appl. Mater. Interfaces, 10(25), 21035–21055 (2018).

https://doi.org/10.1021/acsami.8b03620

Huang, D., Zhang, G., Yi, J., Cheng, M., Lai, C., Xu, P., Zhang,C., Liu, Y., Zhou, C., Xue, W., Wang, R., Li, Z. and Chen, S., Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment, Chemosphere, 263, 1-25 (2021c).

https://doi.org/10.1016/j.chemosphere.2020.127672

Huo, X., Zhou, P., Liu, Y., Cheng, F., Liu, Y., Cheng, X., Zhang, Y. and Wang, Q., Removal of contaminants by activating peroxymonosulfate (PMS) using zero valent iron (ZVI)-based bimetallic particles (ZVI/Cu, ZVI/Co, ZVI/Ni, and ZVI/Ag), RSC Adv., 10(47), 28232–28242 (2020).

https://doi.org/10.1039/d0ra03924a

Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M. and Abdul, A. K., Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency, J. Water Process Eng., 43,1-17 (2021).

https://doi.org/10.1016/J.JWPE.2021.102255

Karimi, M. H., Kumar, B. G., Rajendran, S., Qin, J., Vadivel, S., Durgalakshmi, D., Gracia, F., Soto- Moscoso, M., Orooji, Y. and Karimi, F., Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration, J. Mol. Liq., 314, 113588 (2020).

https://doi.org/10.1016/J.MOLLIQ.2020.113588

Klein, S., Worch, E. and Knepper, T. P., Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany, Environ. Sci. Technol., 49(10), 6070–6076 (2015).

https://doi.org/10.1021/acs.est.5b00492

Kumar, S., Kaushik, R. D. and Purohit, L. P., ZnO- CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin, J. Hazard. Mater, 424, 127332 (2022).

https://doi.org/10.1016/j.jhazmat.2021.127332

Lamba, R., Umar, A., Mehta, S. K. and Kansal, S. K., CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light, J. Alloys Compd., 620, 67–73 (2015).

https://doi.org/10.1016/j.jallcom.2014.09.101

Latha, P., Prakash, K. and Karuthapandian, S., Enhanced visible light photocatalytic activity of CeO2/ alumina nanocomposite: Synthesized via facile mixing- calcination method for dye degradation, Adv. Powder Technol., 28(11), 2903–2913 (2017).

https://doi.org/10.1016/j.apt.2017.08.017

Lellis, B., Fávaro, P. C. Z., Pamphile, J. A., and Polonio, J. C., Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovations, 3(2), 275–290 (2019).

https://doi.org/10.1016/J.BIORI.2019.09.001

Li, D., Huang, J. F., Cao, L. Y., Li, J. Y., Ouyang, H. B. and Yao, C. Y., Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties, Ceram. Int., 40(2), 2647–2653 (2014).

https://doi.org/10.1016/J.CERAMINT.2013.10.061

Liu, C., Wang, Y., Zhang, Y., Li, R., Meng, W., Song, Z.,Qi, F., Xu, B., Chu, W., Yuan, D. and Yu, B., Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: Incorporation NH2-group into structure of its MOF precursor, Chem. Eng. J., 354, 835–848 (2018).

https://doi.org/10.1016/j.cej.2018.08.060

Liu, J., Wang, P., Qu, W., Li, H., Shi, L. and Zhang, D., Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene, Appl. Catal., B, 257, 1-9 (2019).

https://doi.org/10.1016/j.apcatb.2019.117880

Lundström, S. V., Östman, M., Bengtsson, P. J., Rutgersson, C., Thoudal, M., Sircar, T., Blanck, H., Eriksson, K. M., Tysklind, M., Flach, C. F. and Larsson, D. G. J., Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms, Sci. Total Environ., 553, 587–595 (2016).

https://doi.org/10.1016/j.scitotenv.2016.02.103

Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E. and Agarwal, S., Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies, J. Colloid Interface Sci., 362(2), 457–462 (2011).

https://doi.org/10.1016/J.JCIS.2011.06.067

Naseem, T. and Durrani, T., The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review, Environ. Chem. Ecotoxicol., 3, 59–75. (2021).

https://doi.org/10.1016/J.ENCECO.2020.12.001

Naseem, K., Farooqi, Z. H., Begum, R. and Irfan, A., Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review, J. Cleaner Prod., 187, 296–307 (2018).

https://doi.org/10.1016/J.JCLEPRO.2018.03.209

Rachna, Rani, M. and Shanker, U., Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite, J. Environ. Manage., 248, 1-14 (2019).

https://doi.org/10.1016/j.jenvman.2019.109340

Rani, N., Chahal, S., Mahadevan, S. K., Kumar, P., Shukla, R. and Singh, S. K., Development of hierarchical magnesium oxide anchored cerium oxide nanocomposites with improved magnetic properties and photocatalytic performance, Nanotechnol., 31, 374004 (2020).

https://doi.org/10.1088/1361-6528/ab96e8

Rani, M. and Shanker, U., Sun-light driven rapid photocatalytic degradation of methylene blue by poly (methyl methacrylate)/metal oxide nanocomposites, Colloids Surf., A, 559, 136–147 (2018).

https://doi.org/10.1016/j.colsurfa.2018.09.040

Shaheen, K., Suo, H., Arshad, T., Shah, Z., Khan, S. A., Khan, S. B., Khan, M. N., Liu, M., Ma, L., Cui, J., Ji, Y. T. and Wang, Y., Metal oxides nanomaterials for the photocatalytic mineralization of toxic water wastes under solar light illumination, J. Water Process Eng., 34, 1-12 (2020).

https://doi.org/10.1016/J.JWPE.2020.101138

Štengl, V., Bakardjieva, S. and Murafa, N., Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles, Mater. Chem. Phys., 114(1), 217–226 (2009).

https://doi.org/10.1016/J.MATCHEMPHYS.2008.09.025

Suman, T., Sharma, V., Devi, S., Chahal, S., Singh, J. P., Chae, K. H., Kumar, A., Asokan, K. and Kumar, P., Phase transformation in Fe2O3 nanoparticles: Electrical properties with local electronic structure, Physica. B, 620, 413275 (2021c).

https://doi.org/10.1016/j.physb.2021.413275

Theerthagiri, J., Chandrasekaran, S., Salla, S., Elakkiya, V., Senthil, R. A., Nithyadharseni, P., Maiyalagan, T., Micheal, K., Ayeshamariam, A., Arasu, M. V., Al-Dhabi, N. A. and Kim, H. S., Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation, J. Solid State Chem., 267, 35–52. (2018).

https://doi.org/10.1016/J.JSSC.2018.08.006

Thevarajah, S., Huston, T. L. and Simmons, R. M., A comparison of the adverse reactions associated with isosulfan blue versus methylene blue dye in sentinel lymph node biopsy for breast cancer, Am. J. Surg., 189, 236–239 (2005).

https://doi.org/10.1016/J.AMJSURG.2004.06.042

Uribe, L. M. C., Alvarez, L. M. A., Hidalgo, M. C., López, G. R., Quintana, O. P., Oros, R. S., Uribe, L. A. and Acosta, J., Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol, J. Nanomater., 2019, 1-12 (2019).

https://doi.org/10.1155/2019/1015876

Vijaya, S. R., Kayalvizhi, R., John, A. M. and Neyvasagam, K., Optical, structural and photocatalytic properties of rare earth element Gd3+ doped MgO nanocrystals, Chem. Phys. Lett., 792, 139384 (2022).

https://doi.org/10.1016/J.CPLETT.2022.139384

Wahba, M. A., Yakout, S. M., Mohamed, W. A. A. and Galal, H. R., Remarkable photocatalytic activity of Zr doped ZnO and ZrO2/ZnO nanocomposites: Structural, morphological and photoluminescence properties, Mater. Chem. Phys., 256, 123754 (2020).

https://doi.org/10.1016/J.MATCHEMPHYS.2020.123754

Xiao, C., Li, J. and Zhang, G., Synthesis of stable burger- like a -Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance, J. Cleaner Prod., 180, 550–559 (2018).

https://doi.org/10.1016/j.jclepro.2018.01.127

Xing, H., Syntheses of novel lanthanide metal − Organic frameworks for highly efficient visible-light- driven dye degradation, Cryst. Growth Des., 17(8), 4189–4195 (2017).

https://doi.org/10.1021/acs.cgd.7b00504

Yuan, Y., Wei, X., Yin, H., Zhu, M., Luo, H. and Dang, Z., Synergistic removal of Cr(VI) by S-nZVI and organic acids: The enhanced electron selectivity and pH-dependent promotion mechanisms, J. Hazard. Mater., 423, 127240 (2022).

https://doi.org/10.1016/J.JHAZMAT.2021.127240

Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S. and Zhao, J. L., Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49(11), 6772–6782 (2015).

https://doi.org/10.1021/acs.est.5b00729

Zhang, S., Zhang, Z., Li, B., Dai, W., Si, Y., Yang, L. and Luo, S., Hierarchical Ag3PO4@ZnIn2S4 nanoscoparium: An innovative Z-scheme photocatalyst for highly efficient and predictable tetracycline degradation, J. Colloid Interface Sci., 586, 708–718 (2021).

https://doi.org/10.1016/j.jcis.2020.10.140

Zhang, S., Xu, Y., Zhang, W. and Cao, P., Synthesis, characterization, and photocatalytic performance of Cu/Y co-doped TiO2 nanoparticles, Mater. Chem. Phys., 277, 125558 (2022b).

https://doi.org/10.1016/J.MATCHEMPHYS.2021.125558

Zhang, X., Jia, X., Xu, R., Lu, X., Liu, H. and Niu, Y., Ellipsoidal α-Fe2O3@SnO2/Ti3C2 MXene core-shell nanoparticles for photodegradation of organic dyes, J. Alloys Compd., 923, 166315 (2022c).

https://doi.org/10.1016/j.jallcom.2022.166315

Zhang, X., Shi, X., Zhao, Q., Li, Y., Wang, J., Yang, Y., Bi, F., Xu, J., Liu, N., Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study, Chem. Eng. J., 427, 131573 (2022a).

https://doi.org/10.1016/j.cej.2021.131573

Zhao, H., Zhang, G., Chong, S., Zhang, N. and Liu, Y., MnO2/CeO2 for catalytic ultrasonic decolorization of methyl orange: Process parameters and mechanisms, Ultrason. Sonochem., 27, 474–479 (2015).

https://doi.org/10.1016/j.ultsonch.2015.06.009

Zhong, Q., Lin, Q., Huang, R., Fu, H., Zhang, X., Luo, H. and Xiao, R., Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar, Chem. Eng. J., 380, 122608 (2020).

https://doi.org/10.1016/j.cej.2019.122608

Zhongwei, G., Changqing, P., Chang, H. C. and Chih, H. C., Continuous-Flow Photocatalytic Microfluidic-Reactor for the Treatment of Aqueous Contaminants, Simplicity, and Complexity: A Mini-Review, Symmetry, 13(8), 1-18 (2021).

https://doi.org/10.3390/sym13081325

Zong, Y., Li, Z., Wang, X., Ma, J. and Men, Y., Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles, Ceram. Int., 40, 10375–10382 (2014).

https://doi.org/10.1016/J.CERAMINT.2014.02.123

Contact Us

Powered by

Powered by OJS