Open Access

The Effect of Hydrothermal Reaction Time on the Antibacterial Activity of Synthesized Manganese Oxide Nanoparticles

R. Vaideeswaran, Department of Physics, Government Arts College, Coimbatore, Tamilnadu, TN, India A. Yuvarani, Department of Physics, Government Arts College, Coimbatore, Tamilnadu, TN, India
Department of Physics, Nirmala College for Women, Coimbatore, TN, India
I. Sophia Rani, Department of Science and Humanities, Bharat Institute of Engineering and Technology, Hyderabad, TS, India I. Reeta Mary ireetamary@gmail.com
Department of Physics, Government Arts College, Coimbatore, Tamilnadu, TN, India


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 87-92

https://doi.org/10.13074/jent.2023.12.234488

PDF


Abstract

In the context of growing antibiotic resistance and the associated side effects of traditional antibiotics, this research explores the use of nanosized manganese oxide (Mn3O4) as a novel antibacterial agent. This study pioneers the synthesis of Mn3O4 through an eco-friendly hydrothermal method, varying reaction times (2, 4 and 6 hours) at a consistent temperature of 180 °C. Characterization techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy and Scanning electron microscopy, provide insights into their crystallinity, functional groups and morphology. The synthesized Mn3O4 demonstrates remarkable antibacterial efficacy, with larger inhibition zones against both Gram-positive and Gram-negative strains compared to standard antibiotics. This research presents the synthesizing of an eco-friendly, cost-effective antibacterial agent through a straightforward hydrothermal method. Varying reaction times unveil distinctive antibacterial capabilities, making Mn3O4 a promising candidate for future antimicrobial systems and medical applications.

Full Text

Reference


Amanda, C., Miren, E., Marta, E., Ana, L., Yolanda, C., Francesc, R., Elena, S., Antonio, C., Maria, L. G. and Eliana, B. S., State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections, J. Nanobiotechnol., 18(1), 1-24 (2020).

https://doi.org/10.1186/s12951-020-00714-2

Amro, M. E. B., Rendahandi, G. S., Brian, M., Kirk, G. S., Makram, T. S. and Thabet, M. T., Surface charge-dependent Toxicity of Silver nanoparticles, Environ. Sci. Technol., 45(1), 283-287 (2011).

https://doi.org/10.1021/es1034188

Bama, K. and Sundrarajan, M., Facile synthesis and antimicrobial activity of manganese oxide/bentonite nanocomposites, Res. Chem. Intermed., 43(4), 2351-2365 (2017).

http://dx.doi.org/10.1007%2Fs11164-016-2765-7

Bauer, A. W., Kirby, W. M., Sherris, J. C. and Turck, M., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 45(4), 493-496 (2008).

https://doi.org/10.1088/1468-6996/9/3/035004

Bhawana, Rupesh, K. B., Harpreet, S. B., Jain, V. K. and Nidhi, J., Curcumin nanoparticles: preparation, characterization, and antimicrobial study, J. Agric. Food Chem., 59(5), 2056-2061 (2011).

https://doi.org/10.1021/jf104402t

Celine, R. I. R., Sathish, R., Jeya R. A. and Sagayaraj, P., Effect of reaction Time on Synthesis of Cadmium Selenide nanoparticles and the Efficiency of Solar cell, J. Mater. Environ. Sci., 7(5), 1589-1596 (2016).

De, Y., Pengxun, Y., Shuang, C., Jiangtao, C., Renfu, Z., Juanjuan, F. and Guangan, Z., Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO2 Film with Amorphous Bottom Layers by Hydrothermal Method, Cryst. Growth Des., 9(1), 218-222 (2009).

https://doi.org/10.1021/cg800312u

Duran, N. and Seabra, A. B., Metallic Oxide Nanopartilces: State of the Art in Biogenic Syntheses and Their Mechanisms, Appl. Microbiol. Biotechnol., 95(2), 275-288 (2012).

https://doi.org/10.1007/s00253-012-4118-9

Escarlata, R. C. and Antonio, V., Nanostructured bacterial materials for innovative medicines, Trends Microbiol., 18(9), 423-430 (2010).

https://doi.org/10.1016/j.tim.2010.06.007

Hee, D. J. and Jinki, J., The effects of Temperature on particle size in the Gas-Phase production of TiO2, Aerosol Science and Technology, 23(4), 553-560 (2007).

https://doi.org/10.1080/02786829508965337

Jayandran, M., Muhamed, H. M. and Balasubramanian, V., Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity, J. Appl. Pharm. Sci., 5(12), 105-110 (2015).

https://doi.org/10.7324/JAPS.2015.501218

Markides, H., Rotherham, M., and El, H. A. J., Biocompatibility and Toxicity of Magnetic nanoparticles in Regenerative Medicine, J. Nanomater., 2012(sp), 1-11 (2012).

https://doi.org/10.1155/2012/614094

Mohan, K. K., Godavarthi, S., Vázquez, V. E., Casales, D. M., Mahendhiran, M., Hernandez, E. A., Syamala, R. M. G. and Martinez, G., Green synthesis of hausmannite nanocrystals and their photocatalytic dye degradation and antimicrobial studies, J. Sol-Gel Sci. Technol., 80(2), 396-401 (2016).

https://doi.org/10.1007/s10971-016-4136-7

Nagarajan, P. and Rajagopalan, V., Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study, Sci. Technol. Adv. Mater., 9(3), 1-7 (2008).

https://doi.org/10.1088/1468-6996/9/3/035004

Nitin, C. T. D., Barbora, R., Jarmila, V. and Helena, B., Impact of Healthcare-Associated Infections Connected to Medical Devices-An Update, 9(11), 2332 (2021).

https://doi.org/10.3390/microorganisms9112332

Saeed, Y., Ali, D., Abolee, D., Hardi, P., Joshua, S., Olivia, R., Ruihua, C., Afshin, I. and Amir, R. H., Model for Gold nanoparticle synthesis: Effect of pH and Reaction time, ACS omega, 6(26), 16847-16853(2021).

https://doi.org/10.1021/acsomega.1c01418

Shahriar, S., Shahed, B., Sophie, L. and Laird, F. M., Pieter Stroevee and Morteza Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev., 41(6), 2323-2343 (2012).

https://doi.org/10.1039/C1CS15188F

Subramanian, V., Hongwei, Z. and Bingqing, W., Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudo-capacitance properties in neutral electrolyte, Chem. Phys. Lett., 453(4), 242-249 (2008).

https://doi.org/10.1016/j.cplett.2008.01.042

Virender, K. S., Ria, A. Y. and Yekaterina, L., Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface science, 145(1), 83-96 (2009).

https://doi.org/10.1016/j.cis.2008.09.002

Wahran, M. S., Layth, L. H., Nisreen, J. A. and Asmiet, R., Biosynthesis and Antibacterial activity of manganese oxide nanoparticles prepared by green tea extract, Biotechnol. Rep., 34, e00729 (2022).

https://doi.org/10.1016/j.btre.2022.e00729

Watt, E. V. D. and Pretorius, J. C., Purification and identification of active antibacterial components in Carpobrotus edulis L, J. Ethnopharmacol., 6(1):87-91 (2001).

https://doi.org/10.1016/s0378-8741(01)00197-0

Xin, L. and Jiao, S., Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways, Biomater., 31(32):8198-8209 (2010).

https://doi.org/10.1016/j.biomaterials.2010.07.069

Contact Us

Powered by

Powered by OJS