Open Access

Optimization for Removal of COD and BOD through RSM-CCD by Activated Sludge Treatment Process for Pharmaceutical Wastewater

K. Anil Kumar, akkatare@iiim.res.in
CSIR-Indian Institute of Integrative Medicine, Jammu, JK, India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
Sunil Shrivastava, Madelin Enterprises Pvt. Ltd., Silvassa, DN, India Aliya Tabassum, CSIR-Indian Institute of Integrative Medicine, Jammu, JK, India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
Sumit Roy, CSIR-Indian Institute of Integrative Medicine, Jammu, JK, India Rohit Raikwar, CSIR-Indian Institute of Integrative Medicine, Jammu, JK, India Isha Katare, Ujjain Engineering College, Department of Chemical Engineering, Ujjain, MP, India S. Ashok Kumar, Ujjain Engineering College, Department of Chemical Engineering, Ujjain, MP, India Sarita Sharma Ujjain Engineering College, Department of Chemical Engineering, Ujjain, MP, India


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 68-86

https://doi.org/10.13074/jent.2023.12.234486

PDF


Abstract

Wastewater generated from home and commercial operations is a polluting component of water. One of the main contributors for the production of wastewater by various manufacturing processes is the pharmaceutical industry. The commercial operations of industry are causing an increase in the amount of organic and inorganic contaminants, such as total suspended solids, chemical oxygen demand (COD) and biological oxygen demand (BOD). Activated sludge process reduces COD, BOD and Total Suspended Solids (TSS), with three input variables: pH, time and Mixed Liquor Suspended Solids (MLSS). The Central Composite Design-Response Surface Methodology (CCD-RSM) is used to optimize responses for COD and BOD removal efficiency. To achieve optimization results, numerous sets of trials were conducted for the input variables - pH (4.2–6.5), time (12–30 h) and MLSS (2520–4310 mg/l). The analyzed models were shown to be quadratic and highly significant by the F-value and P-value. The regression coefficients (R2) for the quadratic models developed for removal efficiency, COD, and BOD5 are 0.9996, 0.9995 and 0.9996, respectively. According to CCD-RSM, the optimal matching input factors for the greatest removal efficiency of BOD and COD were: MLLS = 3415 mg/l, time = 21 h and pH = 5.35. Using the traditional method, the maximum removal (95%) of BOD and COD was seen at pH = 6.5, time = 12 h and MLLS = 4310 mg/l.

Full Text

Reference


Abdelfattah, I., Abuarab, M. E., Mostafa, E., El-Awady, M. H., Aboelghait, K. M. and El-Shamy, A. M., Integrated system for recycling and treatment of hazardous pharmaceutical wastewater, Inter. J. Environ. Sci. Technol., 20, 4101–4110, (2023).

https://doi.org/10.1007/s13762-022-04269-7

Abdulgader, M., Qiming. J. Y., Ali. A. Z., Philip, W., Zahra, R., Application of response surface methodology (RSM) for process analysis and optimization of milk processing wastewater treatment using multistage flexible fiber biofilm reactor, J. Environ. Chem. Eng., 8(3), 1-10 (2020).

https://doi.org/10.1016/j.jece.2020.103797

Ahansazan, B., Afrashteh, H., Ahansazan, N. and Ahansazan, Z., Activated Sludge Process Overview, Inter. J. Environ. Sci. Dev., 5(1), 81-85 (2014).

https://doi.org/10.7763/IJESD.2014.V5.455

Ahmad, A. L., Ismail, S. and Bhatia, S., Optimization of Coagulation−Flocculation Process for Palm Oil Mill Effluent Using Response Surface Methodology, Environ. Sci. Technol., 39, 8, 2828–2834 (2005).

https://doi.org/10.1021/es0498080

Alleman, J. E., Activated sludge treatment of industrial wastewater, Technomic Publishing Company, (1995).

https://doi.org/10.1002/ep.3300160404

Amirian, P., Edris B. and Abolfazl, P., Textile Wastewater Treatment Using Photonanocatalytic Process (UV/CuO Nanoparticles): Optimization of Experiments by Response Surface Methodology, Health Scope, 7(3), 1-9 (2018).

https://doi.org/10.5812/jhealthscope.57689

Ardern, E. and W. T. Lockett, Experiments on the oxidation of sewage without the aid of filters, J. Soc. Chem. Ind., 33(10), 523-539 (1914).

Azila, Y. Y., Mashitah, M. D. and Bhatia, S., Process optimization studies of lead (Pb (II)) biosorption onto immobilized cells of Pycnoporus sanguineus using response surface methodology, Bioresource Technol., 99(18), 8549-8552 (2008).

https://doi.org/10.1016/j.biortech.2008.03.056

Balakrishna, K., Amlan, R., Yerabham, P., Keerthi, S. G., Bikram, S., A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies, Ecotoxicology Environ. Saf., 137, 113-120 (2017).

https://doi.org/10.1016/j.ecoenv.2016.11.014

Barnes, K. K., Dana, W. K., Michael, T. M., Michael, T., E., Edward, T. F., Steven, D. Z. and Larry, B. B., Water-quality data for pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000, US Geological Survey Open-File Report, 2(94), 317-326 (2002).

Bashir, M. J. K., Salem, S. A. A., Shuokr, Q. A., Ng, C. A. and Sumathi, S., Wastewater treatment processes optimization using response surface methodology (RSM) compared with conventional methods: review and comparative study, Middle-East J. Sci. Res., 23(2), 244-252 (2015).

https://doi.org/10.5829/idosi.mejsr.2015.23.0252

Behera, S. K., Hyeong, W. K., Jeong-Eun, O., Hung, S., P., Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea, Sci. Total Environ., 409(20), 4351-4360 (2011).

https://doi.org/10.1016/j.scitotenv.2011.07.015

Birjandi, N., Habibollah, Y., Nader, B., Shahin, G., Ali, A. Z. and Sumathi, S., Optimization of coagulation-flocculation treatment on paper-recycling wastewater: application of response surface methodology, J. Environ. Sci. Health, Part A, 48(12), 1573-1582 (2013).

http://dx.doi.org/10.1080/10934529.2013.797307

Cakici, A. and M. Bayramoǧlu, An approach to controlling sludge age in the activated sludge process, Water Res., 29(4), 1093-1097 (1995).

https://doi.org/10.1016/0043-1354(94)00249-7

Castiglioni, S., Renzo Bagnati, Roberto Fanelli, Francesco Pomati, Davide Calamari, Ettore Zuccato, Removal of pharmaceuticals in sewage treatment plants in Italy, Environ. Sci. technol., 40(1), 357-363 (2006).

https://doi.org/10.1021/es050991m

Chollom, M. N., Sudesh, R., Feroz, M. S., Babatunde, F. B., Emmanuel, K. T., Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater, Environ. Eng. Res., 25(1), 114-122 (2020).

https://doi.org/10.4491/eer.2018.366

Dargahi, A., Mohammad, R. S., Amir, S., Mohammad, M. M. and Hasan, Z. N., Statistical modeling of phenolic compounds adsorption onto low-cost adsorbent prepared from aloe vera leaves wastes using CCD-RSM optimization: effect of parameters, isotherm, and kinetic studies, Biomass Conversion and Biorefinery, 13, 7859–7873 (2023).

https://doi.org/10.1007/s13399-021-01601-y

El-Gohary, F. A., Nasr, F. A., Aly, H .I., Cost-Effective Pre-Treatment of Food-Processing Industrial Wastewater, Water Sci. Technol., 40(7), 17-24 (1999).

https://doi.org/10.1016/S0273-1223(99)00579-X

Emamjomeh, M., Kakavand, S., Jamali, H., Alizadeh, S. M., Safdari, M., Mousavi, S. E. S., Hashim, K. S. and Mousazadeh, M., The Treatment of Printing and Packaging Wastewater by Electrocoagulation-Flotation: The Simultaneous Efficacy of Critical Parameters and Economics, Desalination Water Treat., 205, 161–174 (2020).

https://doi.org/10.5004/dwt.2020.26339

Gerardi, M. H., Settleability problems and loss of solids in the activated sludge process, John Wiley & Sons (2003).

Hauduc, H., Rieger, L., Oehmen, A., Van L. M. C. M., Comeau, Y., Héduit, A., Vanrolleghem, P. A., Gillot, S ., Critical review of activated sludge modeling: state of process knowledge, modeling concepts, and limitations, Biotechnol Bioeng., 110(1), 24-46 (2013).

https://doi.org/10.1002/bit.24624

Horan, N., Suspended growth processes, The Handbook of Water and Wastewater Microbiology, 351-360 (2003).

Jacob, S. and Banerjee T., Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm, Bioresource Technology, 214, 386-395 (2016).

https://doi.org/10.1016/j.biortech.2016.04.068

Jasni, A. B., Kamyab, H., Chelliapan, S., Arumugam, N., Krishnan, S., Md, D. M. F., Treatment of Wastewater Using Response Surface Methodology: A Brief Review, Chem. Eng. Trans., 78, 535-540 (2020).

https://doi.org/10.3303/CET2078090

Jones, O. A. H. Voulvoulis, N., and Lester, J. N., Human pharmaceuticals in wastewater treatment processes, Crit. Rev. environ. Sci. technol., 35(4), 401-427 (2005).

https://doi.org/10.1080/10643380590956966

Khan, S., Maria, S., Noor, J., Shafiqur, R., Tahir, S. M, Islamud, D., Drinking water quality and human health risk in Charsadda district, Pakistan, J. Cleaner Prod., 60, 93-101 (2013).

https://doi.org/10.1016/j.jclepro.2012.02.016

Khannous, L., Abid, D., Gharsallah, N., Kechaou, N. and Boudhrioua, M. N., Optimization of coagulation-flocculation process for pastas industry effluent using response surface methodology, Afr. J. Biotechnol., 10(63), 13823-13834 (2011).

https://doi.org/10.5897/AJB11.1142

Kumar, M. N. S., Ravi, R., Manonmani, H. K., Production and optimization of L-asparaginase from Cladosporium sp. using agricultural residues in solid state fermentation, Ind. Crops Prod., 43, 150-158 (2013).

https://doi.org/10.1016/j.indcrop.2012.07.023

Machdar, I., Sekiguchi, Y., Sumino; H., Ohashi, A. and Harada, H., Combination of a UASB Reactor and a Curtain Type DHS (Downflow Hanging Sponge) Reactor as a Cost-Effective Sewage Treatment System for Developing Countries, Water Sci. Technol., 42 (3), 83–88 (2000).

https://doi.org/10.2166/wst.2000.0362

Maddipati, P., Hasan, K. A., Danielle, D. B. and Raymond, L. H., Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract, Bioresour. Technol., 102(11), 6494-6501 (2011).

https://doi.org/10.1016/j.biortech.2011.03.047

Miserli, K., Amalia, N. and Ioannis, K., Removal of Organic Pollutants (Pharmaceuticals and Pesticides) From Sewage Sludge by Hydrothermal Carbonization Using Response Surface Methodology (RSM), J. Chem. Technol. Biotechnol., 97(11), 3111-3120 (2022).

http://dx.doi.org/10.1002%2Fjctb.7178

Modi, D. P. N., Sewage Treatment & Disposal and Waste Water Engineering, Rajsons publications pvt. Ltd., (2017).

Moradnia, M., Masoud, P. F, Kavoos, D., Hamzeh, A. J., Optimizing Potassium Ferrate for Textile Wastewater Treatment by RSM, Environ. Health Eng. Manag., 3(3), 137-142 (2016)

Mutiyar, P. K. and Mittal A. K., Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India), Environ. Monitor. Assess., 186(1), 541-557 (2014).

https://doi.org/10.1007/s10661-013-3398-6

Nasir, N. M., Ting T. M. Fakhru'l-Razi, A. and Shafreeza, S., Decomposition and Biodegradability Enhancement of Textile Wastewater Using a Combination of Electron Beam Irradiation and Activated Sludge Process, Water Sci. Technol., 62(1), 42-47 (2010).

https://doi.org/10.2166/wst.2010.239

Nasr, F. A., Ibrahim, A. and Saber, A. E., Cost-Effective Management of Confectionery Industrial Wastewater, Egyptian J. Chem., 65(5), 391-399 (2022).

https://doi.org/10.21608/ejchem.2022.113488.5164

New A. P., Freitas, L. M. D. S., Lo, B. G., A Spicq Analytical technique used for monitoring the biodegradation of fluorinated compounds in waste streams from pharmaceutical production, J. Chromatogr. A, 889(1), 177-184 (2000).

https://doi.org/10.1016/s0021-9673(00)00571-9

Nikpour, B., Jalilzadeh, Y. R., Takdastan, A., Hassani, A. H., Zazouli, M. A., The Investigation of Biological Removal of Nitrogen and Phosphorous From Domestic Wastewater by Inserting Anaerobic/Anoxic Holding Tank in the Return Sludge Line of MLE-OSA Modified System, J. Environ. Health Sci. Eng., 18(1), 1-10 (2020).

https://doi.org/10.1007/s40201-019-00419-1

Ortíz-Álvarez, M. D., John, H. S. G., Michael, E. P. -R., Ángel, D. G. D., Andrés, F. B. S., and Néstor, A. U.S., Removal of Organic Pollutants From San Pablo Farm Wastewater Using a Pilot-Scale Biological Treatment, Contemporary Engineering Sciences, 10(34), (2017).

https://doi.org/10.12988/ces.2017.711191

Özer, A., Görkem Gürbüz a, Ayla Çalimli b, Bahadır K. Körbahti, Biosorption of copper (II) ions on Enteromorpha prolifera: application of response surface methodology (RSM), Chem. Eng. J., 146(3), 377-387 (2009).

https://doi.org/10.1016/j.cej.2008.06.041

Pambi, R. and P. Musonge Application of response surface methodology (RSM) in the treatment of final effluent from the sugar industry using Chitosan, WIT Tran. Ecol. Environ., 209, 209-219 (2016).

Paraskeva, P. and E. Diamadopoulos, Technologies for Olive Mill Wastewater (OMW) Treatment: A Review, J. Chem. Technol. Biotechnol., (2006).

https://doi.org/10.1002/jctb.1553

Seviour, R. J. and Blackall, L. L., The activated sludge process, The microbiology of activated sludge, Springer, 44-75 (1998).

https://doi.org/10.1007/978-94-011-3951-9

Sreekanth, D., Sivaramakrishna, D., Himabindu, V., Anjaneyulu, Y., Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor, Biores. Technol., 100(9), 2534-2539 (2009).

https://doi.org/10.1016/j.biortech.2008.11.028

Stamatelatou, K., Vavilin, V., Lyberatos, G., Performance of a glucose fed periodic anaerobic baffled reactor under increasing organic loading conditions: 1. Experimental results, Biores. Technol., 88(2), 131-136 (2003).

https://doi.org/10.1016/s0960-8524(02)00276-6

Tetteh, E. K., Rathilal, S. and Chollom, M. N., Treatment of industrial mineral oil wastewater-optimisation of coagulation flotation process using response surface methodology (RSM), Inter. J. Appl. Eng. Reso., 12(23), 13084-13091 (2017).

Wahab, W. A. A. and Ahmed, S. A., Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017, Inter. J. Biol. Micromole., 115, 447-458 (2018).

https://doi.org/10.1016/j.ijbiomac.2018.04.041

Wang, J. P., Chen, Y. Z., Ge, X. W. and Yu, H. Q., Optimization of coagulation–flocculation process for a paper-recycling wastewater treatment using response surface methodology, Colloids Surf., A, 302(1), 204-210 (2007).

http://dx.doi.org/10.1016/j.colsurfa.2007.02.023

Yousefi, Z., Ali, Z. and Abdolaziz, G., Application of Taguchi’s Experimental Design Method for Optimization of Acid Red 18 Removal by Electrochemical Oxidation Process, Environ. Health Eng. Manag., 5(4), 241-248 (2018).

http://dx.doi.org/10.15171/EHEM.2018.32

Contact Us

Powered by

Powered by OJS