Open Access

Investigation of Dielectric Properties of Potato, Tomato and Onion Juices at Microwave Frequencies

V. Ravika, ravikavijay@gmail.com
Department of Physics, S. S. Jain Subodh P.G. College, Rambagh, Jaipur, RJ, India
K. S. Sharma Department of Physics, IIS (deemed to be University), Mansarovar, Jaipur, RJ, India


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 52-59

https://doi.org/10.13074/jent.2023.12.234483

PDF


Abstract

The dielectric properties of fresh juices of Solanum tuberosum (potato), Solanum lycopersicum (tomato) and Allium cepa (onion) were measured in terms of the dielectric constant and dielectric loss factor, over a frequency range from 1 to 50 GHz and at temperatures ranging from 30 to 60 °C, by using the PNA network analyzer model E8364C and open-ended coaxial probe 85070E. A prediction of relaxation frequencies of molecules for the three different juices was done and their molecular behavior was then studied by plotting dielectric constant vs. frequency and dielectric loss factor vs. frequency curves in the frequency range from 1 to 50 GHz at four different temperatures from 30 to 60 °C. The dielectric properties of food products play a crucial role in determining their heating behavior when subjected to an electromagnetic field. Understanding these properties is essential for the development of microwave pasteurization and sterilization processes tailored to various food products.

Full Text

Reference


Ahmed, J., Seyhun, N., Hosahalli, S., Ramaswamy, H. S., and Luciano, G., Dielectric Properties of Potato Puree in Microwave Frequency Range as Influenced by Concentration and Temperature, Int. J. Food Prop., 12(4), 896–909 (2009).

https://doi.org/10.1080/10942910802105460

Alvi, T., Khan, M. K. I., Maan, A. A., Nazir, A., Ahmad, M. H., Khan, M. I., Sharif, M., Khan, A. U., Afzal, M. I., and Umer, M., Modelling and Kinetic Study of Novel and Sustainable Microwave-Assisted Dehydration of Sugarcane Juice, Processes., 7, 712 (2019).

https://doi.org/10.3390/pr7100712

Awuah, G. B., Ramaswamy, H. S., Economides, A., and Mallikarjunan, K., Inactivation of Escherichia Coli K-12 and Listeria Innocua in Milk Using Radio Frequency (RF) Heating, Innov. Food Sci. Emerg. Technol., 6, 396–402 (2005).

https://doi.org/10.1128/aem.66.10.4173-4179.2000

Benlloch-Tinoco, M., Pina-Pérez, M. C., Martínez-Navarrete, N., and Rodrigo D., Listeria Monocytogenes Inactivation Kinetics Under Microwave and Conventional Thermal Processing in a Kiwifruit Puree, Innov. Food Sci. Emerg. Technol., 22, 131–136 (2014).

https://doi.org/10.1016/j.ifset.2014.01.005

Brinley, T. A., Dock, C. N., Truong, V. D., Coronel, P., Kumar, P., Simunovic, J., Sandeep, K. P., Cartwright, G. D., Swartzel, K. R., and Jaykus, L. A., Feasibility of Utilizing Bioindicators for Testing Microbial Inactivation in Sweet potato Purees Processed with a Continuous-Flow Microwave System, J. Food Sci., 72(5), 235–242 (2007).

https://doi.org/10.1111/j.1750-3841.2007.00371.x

Bento, L., Rein, P., Sabliov, C., Boldor, D., and Coronel, P. C., Massecuite Re-heating Using Microwaves, J. Am. Soc. Sugar Cane Technol., 26, 1–13 (2006).

Calay, R. K., Newborough, M., Probert, D., and Calay, P. S., Predictive equations for the dielectric properties of foods, Int. J. Food Sci. Technol., 29(6), 699-713 (1995).

https://doi.org/10.1111/j.1365-2621.1994.tb02111.x

Feng, H., Tang, J., and Cavalieri, R. P., Dielectric properties of dehydrated apples as affected by moisture and temperature, Trans. ASAE, 45(1), 129-135 (2002).

Franco, A. P., Tadini, C. C., Wilhelms, and Gut, J. A., Predicting the Dielectric Behavior of Orange and Other Citrus Fruit Juices at 915 and 2450 MHz, Int. J. Food Prop., 20(2), 1–21 (2017).

https://doi.org/10.1080/10942912.2017.1347674

Franco, A. P., Yamamoto, L. Y., Tadini, C. C., Gut, J. A. W., Dielectric Properties of Green Coconut Water Relevant to Microwave Processing: Effect of Temperature and Field Frequency, J. Food Eng., 155, 69–78 (2015).

https://doi.org/10.1016/j.jfoodeng.2015.01.011

Giuliani, R., Bevilacqua, A., Corbo, M. R., and Severini, C., Use of Microwave Processing to Reduce the Initial Contamination by Alicyclobacillus Acidoterrestris in a Cream of Asparagus and Effect of the Treatment on the Lipid Fraction, Innov. Food Sci. Emerg. Technol., 11(2), 328–334 (2010).

https://doi.org/10.1016/j.ifset.2009.09.003

Guan, D., Cheng, M., Wang, Y., and Tang, J., Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes, J. Food Sci., 69(1), 30-37 (2004).

Hasted, J. B., Aqueous dielectrics Series: Studies in Chemical Physics, Chapman and Hall Press, London, UK (1973).

https://doi.org/10.1002/JOBM.19760160714

İçier, F. and Baysal, T., Dielectrical properties of food materials-1: Factors affecting and industrial uses, Crit. Rev. Food Sci. Nutr., 44(6), 465–471 (2004).

https://doi.org/10.1080/10408690490886692

Ikediala, J. N., Tang, J, Drake, S. R. and Neven, L. G., Dielectric properties of apple cultivars and codling moth larvae, Trans. ASAE, 43(5), 1175-1184 (2000).

https://doi.org/10.13031/2013.3010

Kim, W. J, Park, S. H and Kang, D. H., Inactivation of Foodborne Pathogens Influenced by Dielectric Properties, Relevant to Sugar Contents, in Chili Sauce by 915 MHz, Microwaves. Lwt., 96, 111-118 (2018).

https://doi.org/10.1016/j.lwt.2018.04.089

Kuang, W. and Nelson, S. O., Dielectric relaxation characteristics of fresh fruits and vegetables from 3 to 20 GHz, J. Microw. Power Electromagn. Energy, 32(2), 114-122 (1997).

https://doi.org/10.1080/08327823.1997.11688332

Kudra, T., Raghavan, S. V., Akyel, C., BossisioRand, van de Voort FR. Electromagnetic properties of milk and its constituents at 2.45 MHz, J. Microwave Power Institute., 27(4), 199–204 (1992).

http://dx.doi.org/10.1080/08327823.1992.11688191

Lurwan, M. M., Zangina, T., Maharaz, M. N., Suleman, A. B., Abdulsalam, I. G., Danbatta, K. B. and Musa, M. A., Dielectric Properties of Fresh Roma and Cherry Tomato Samples at Different Frequencies and Temperatures, J. Sci. Technol., 9(4), 290-297 (2021).

Lyu, X., Peng, X., Wang, S., Yang, B., Wang, X., Yang, H., Xiao, Y., Baloch, A. B. and Xia, X., Quality and Consumer Acceptance of Radio Frequency and Traditional Heat Pasteurised Kiwi Puree During Storage, Int. J. Food Sci. Technol., 53(1), 209–218 (2018).

https://doi.org/10.1111/ijfs.13575

Mendes, O. G., Deering, A. J., San, M. G. M. F. and Campanella, O. H., Microwave Pasteurization of Apple Juice: Modeling the Inactivation of Escherichia Coli O157:H7 and Salmonella Typhimurium at 80–90 °C, Food Microbiol., 87, 1-42 (2020).

https://doi.org/10.1016/j.fm.2019.103382

Muñoz, I., de, S. D., Guardia, M. D., Rodriguez, C. J, Nunes, M. L., Oliveira, H., Cunha, S. C., Casa, l. S., Marques, A. and Cabado, A. G., Comparison of Different Technologies (Conventional Thermal Processing, Radiofrequency Heating and High-Pressure Processing) in Combination with Thermal Solar Energy for High Quality and Sustainable Fish Soup Pasteurization, Food Bioprocess Technol., 15(4), 795–805 (2022).

https://doi.org/10.1007/s11947-022-02782-8

Mudgett, R. E., Goldblith, S. A., Wang, D. I. C. and Westphal, W. B., Dielectricbehavior of a semisolid food at low, intermediate and high moisture contents, J. MicrowPower, 15, 27-36 (1980).

Muthukumarappan, K., Swamy, G. J., The microwave processing of foods. In: Kutz, M. (Ed.). Handbook of Farm, Dairy and Food Machinery Engineering, Academic Press, New York, NY, USA, 417-438 (2019).

Nelson, S. O., Frequency and temperature-dependent permittivities of fresh fruits and vegetables from 0.0l to 1.8 GHz, Trans. ASAE, 46(2), 567–574 (2003).

Nelson, S. O., Dielectric spectroscopy studies on fresh fruits and vegetables, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 1, 360-364 (2005)

http://dx.doi.org/10.1109/IMTC.2005.1604135 .

Nelson, S. O. and Bartley, P. G., Frequency and temperature dependence of the dielectric properties of food materials, Trans. ASAE, 45(4), 1223-1227 (2002).

Nelson, S. O. and Bartley, P. G., Measuring frequency and temperature dependent permittivities of food materials, Instrumentation and Measurement, IEEE Transactions, 51(4), 589-592 (2002).

https://doi.org/10.1109/TIM.2002.802244

Nelson, S. O., Forbu, S., and Lawrence, K. C., Permittivities of fresh fruits and vegetables at 0.2 to 20 GHz, J. Microw. Power Electromagn. Energy, 29(2), 81–93 (1994).

https://doi.org/10.1080/08327823.1994.11688235

Pina-Pérez, M. C., Benlloch-Tinoco, M., Rodrigo, D. and Martinez, A., Cronobacter Sakazakii Inactivation by Microwave Processing, Food Bioprocess Technol., 7(3), 821–828 (2014).

https://doi.org/10.1007/s11947-013-1063-2

Regier, M., Schubert, H. Introducing microwave processing of food: Principles and technologies, The Microwave Process of Foods, 3–21 (2005).

https://doi.org/10.1533/9781845690212.1.3

Resurreccion, F. P., Luan, D., Tang, J., Liu, F., Tang, Z., Pedrow, P. D. and Cavalieri, R. Effect of changes in microwave frequency on heating patterns of foods in a microwave assisted thermal sterilization system, J. Food Eng., 150, 99–105 (2015).

https://doi.org/10.1016/j.jfoodeng.2014.10.002

Ryynänen, S., The electromagnetic properties of food materials: A review of the basic principles, J. Food Eng., 26(4), 409–429 (1995).

https://doi.org/10.1016/0260-8774(94)00063-F

Siguemoto, É. S., Purgatto, E., Hassimotto, N. M. A. and Gut, J. A. W., Comparative Evaluation of Flavour and Nutritional Quality After Conventional and Microwave-Assisted Pasteurization of Cloudy Apple Juice, Lwt., 111(1), 853–860 (2019).

https://doi.org/10.1016/j.lwt.2019.05.111

Singh, S. P., An Analysis of Dielectric Parameters and Penetration Depth of Tomato Sauces, J. Food Process. Technol., 9(7), 742 (2018).

https://doi.org/10.4172/2157-7110.1000742

Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A, García, H. S., Dielectric Properties of Foods: Reported Data in the 21st Century and Their Potential Applications, LWT - Food Sci. Technol., 43(8), 1169–1179 (2010).

https://doi.org/10.1016/j.lwt.2010.03.017

Vijay, R., Jain, R. and Sharma, K. S., Dielectric spectroscopy of grape juice at microwave frequencies, Int. Agrophys., 29(2), 239-246 (2015).

https://doi.org/10.1515/intag-2015-0025

Wang, Y, Wig, T. D., Tang, J. and Hallberg, L. M., Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization, J. Food Eng., 57, 257-268 (2003).

Zhu, J., Zhang, D., Zhou, X., Cui, Y., Jiao, S. and Shi, X., Development of a Pasteurization Method Based on Radio Frequency Heating to Ensure Microbiological Safety of Liquid Egg, Food Control., 123, 107035 (2021).

https://doi.org/10.1016/j.foodcont.2019.107035

Zhu, X., Guo, W. and Jia, Y., Temperature-Dependent Dielectric Properties of Raw Cow’s and Goat’s Milk from 10 to 4,500 MHz Relevant to Radio-Frequency and Microwave Pasteurization Process, Food Bioprocess Technol., 7(6), 1830–1839 (2014).

https://doi.org/10.1007/s11947-014-1255-4

Zhu, X., Guo, W. and Wu, X., Frequency and Temperature Dependent Dielectric Properties of Fruit Juices Associated with Pasteurization by Dielectric Heating, J. Food Eng., 109(2), 258–266 (2012).

https://doi.org/10.1016/j.jfoodeng.2011.10.005

Contact Us

Powered by

Powered by OJS