Open Access

The Effect of Sodium on a Molybdenum Layer by Varying the Growth Pressure on CIGS Solar Absorp-tion Layer

N. J. Suthan Kissinger suthanjk@gmail.com
Department of General Studies, Physics Section, Jubail Industrial College, Al Huwayalat, Al Jubail, Eastern Province, Kingdom of Saudi Arabia


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 35-42

https://doi.org/10.13074/jent.2023.12.234481

PDF


Abstract

Flexible Cu (In, Ga) Se2 (CIGS) solar cells on stainless-steel (STS) substrates face the problem of efficiency deterioration when iron impurities diffuse into the absorber layer. Iron, the main component of stainless steel, can diffuse through the back contact into the CIGS absorber, where Fe impurities are known to reduce the solar cell performance. In this work, the sodium-doped Molybdenum (Mo-Na) layer was made as a diffusion barrier on STS substrate for various growth pressures. The formed Mo-Na diffusion barrier layer was analyzed by Scanning Electron Microscopy, X-ray diffractometer and UV-Vis Spectrophotometer. X-ray diffraction showed that the films grown on STS substrates had a pure chalcopyrite phase with a preferred (112) orientation Mo back contact and the CIGS layer was subsequently deposited by co-sputtering technique and selenization process, to investigate the Na diffusion through the diffusion barrier into the CIGS absorption layer. The concentrations of Na and Fe diffused in the CIGS layer were also measured by secondary ion mass spectroscopy (SIMS). The SIMS depth profile and optical measurement results demonstrated that the diffusion of Na into the CIGS absorber layer was controlled by varying the working pressure of the Mo-Na layer.

Full Text

Reference


Bae, D., Kwon, S., Oh, J., Kim, W. K. and Park, H., Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells, Renewable Energy, 55, 62–68 (2013).

http://dx.doi.org/10.1016/j.renene.2012.12.024

Bjorkman, C. P., Jani, S., Westlinder, J., Linnarsson, M, K., Scragg, J. and Edoff, M., Diffusion of Fe and Na in co-evaporated Cu(In,Ga)Se2 devices on steel substrates, Thin Solid Films, 535, 188–192 (2013).

https://doi.org/10.1016/j.tsf.2012.11.067

Bodegard, M., Granath, K. and Stolt, L., Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors, Thin Solid Films, 361, 9-16 (2000).

https://doi.org/10.1016/S0040-6090(99)00828-7

Chuan, C. C., Qi, X., Tsai, M. G., Wu, Y. F., Chen, I. G., Lin, C. Y., Wu, P. H., Chang, K. P., Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target, Surf. Coat. Technol., 231, 209-213 (2013). http://dx.doi.org/10.1016/j.surfcoat.2012.06.065

Granata, J., E., Sites, J. R., Asher, S. and Matson, R. J., Quantitative incorporation of sodium in CuInSe2 and Cu(In,Ga)Se2 photovoltaic devices, Proceedings of the Conference Record of 26Th IEEE Photovoltaic Specialists Conference, 387-390 (1997).

https://doi.org/10.1109/PVSC.1997.654109

Herz, K., Kessler, F., Wachter, R., Powalla, M., Schneider, J., Schulz, A. and Schumacher, U., Dielectric barriers for flexible CIGS solar modules, Thin Solid Films, 403–404, 384–389 (2002).

https://doi.org/10.1016/S0040-6090(01)01516-4

Jackson, P., Grabitz, P., Strohm, A., Bilger, G., Schock, H. W., Contamination of Cu (In, Ga)Se2 solar cells by metallic substrate elements, Proceedings of the 19th European Photovoltaic Solar Energy Conference, 1936-1938 (2004).

Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W. and Powalla, M., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovoltaics Res. Appl., 19(7), 894-897 (2011).

https://doi.org/10.1002/pip.1078

Kessler, F. and Rudmann, D., Technological aspects of flexible CIGS solar cells and modules, Sol. Energy, 77, 685-695 (2004). https://doi.org/10.1016/j.solener.2004.04.010

Nakada, T., Iga, D., Ohbo, H., Kunioka, A., Effects of sodium on Cu(In,Ga)Se2-based thin films and solar cells, Jpn. J. Appl. Phys., 361, 9-16 (2000). https://doi.org/10.1143/JJAP.36.732

Niles, D. W., Ramanathan, K., Hasoon, F., Noufi, R., Tielsch, B. J. and Fulghum, J. E., Na impurity chemistry in photovoltaic CIGS thin films:Investigation with x-ray photoelectron spectroscopy, J. Vaccum Sci. Technol. A., 15, 3044-3049 (1997).

https://doi.org/10.1116/1.580902

Pianezzi, F., Chirila, A., Blosch, P., Seyrling, S., Buecheler, S., Kranz, L., Fella, C. and Tiwari, A. N., Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier, Prog. Photovoltaics Res. Appl., 20(3), 253-259 (2012).

https://doi.org/10.1002/pip.1247

Reinhard, C. P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H., Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S. and Tiwari, A. N., Potassium-induced surface modification of Cu(In,Ga,)Se2 thin films for high-efficiency solar cells, Nat. Mater., 12 (12), 1107-1111 (2013).

https://doi.org/10.1038/nmat3789

Ruckh, M., Schmid, D., Kaiser, M., Schiffler, R., Walter, T. and Schock, H. W., Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films, Sol. Energy Mater. Sol. Cells, 41, 335-434 (1996).

https://doi.org/10.1016/0927-0248(95)00105-0

Rudmann, D., Bilger, G., Kaelin, M., Haug, F. J., Zogg, H. and Tiwari, A. N., Effect of NaF coevaporation on structurl properties of Cu(In, Ga)Se2 thin films, Thin Solid Films, 431, 37-40 (2003).

https://doi.org/10.1016/S0040-6090(03)00246-3

Rudmann, D., Da, C. A. F., Kaelin, M., Kurdesau, F., Zogg, H., Tiwari, A. N., Bilger, G., Efficiency enhancement of Cu(In.Ga)Se2 solar cells due to post-deposition Na incorporation, Appl. Phys. Lett., 84(7), 1129-1131 (2004).

https://doi.org/10.1063/1.1646758

Sakurai, Y., Yamada, A., Fons, P., Matsubara, K., Kojima, T., Niki, S., Baba, T., Tsuchimochi, T. and Kimura, N. H., Adjusting the sodium diffusion into CuInGaSe2 absorbers by preheating of Mo/SLG substrates, J. Phys. Chem. Solids, 64, 1877-1880 (2003).

https://doi.org/10.1016/S0022-3697(03)00173-2

Schroeder, D. J. and Rockett, A. A., Electronic effects of sodium in epitaxial CuIn1-xGaxSe2, J. Appl. Phys., 82(10), 4982-2985 (1997). https://doi.org/10.1063/1.366365

Song, X., Caballero, R., Felix, R., Gerlach, D. and Kaufmann, C. A., Schock, H. W., Wilks, R. G., Bar, M., Na incorporation into Cu(In,Ga)S2 thin-film solar cells absorbers deposited on polyimide: Impact on the chemical and electronic surface structure, J. Appl. Phys., 111(3), 1-9 (2012). https://doi.org/10.1063/1.3679604

Su-Huai, W., Zhang, S. B. and Alex, Z., Effects of Na on the electrical and structural properties of CuInSe2, J. Appl. Phys., 85, 7214-7218 (1999). https://doi.org/10.1063/1.370534

Tauc, J., Amorphous and Liquid Semiconductors, Springer, New York, 97-103 (1974).

Wallin, E., Malm, U., Jarmar, T., Lundberg, O., Edoff, M. and Stolt, L., World-record Cu(In,Ga)Se2-based thin-film sub-module with 17.4% efficiency, Prog. Photovoltaics Res. Appl., 20, 851-854 (2012).

https://doi.org/10.1002/pip.2246

Ye, S., Tan, X., Jiang, M., Fan, B., Tang, K., Zhuang, S., Impact of different Na-incorporating methods on Cu(In, Ga) Se2 thin film solar cells with a low-Na structure, Appl. Opt., 49, 1662-1665 (2010).

http://dx.doi.org/10.1364/AO.49.001662

Yun, J. H., Kim, K. H., Kim, M., Ahn, B. T., Ahn, S. J., Lee, J. C. and Yoon, K. H., Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate, Thin Solid Films, 515, 5876-5879 (2007).

https://doi.org/10.1016/j.tsf.2006.12.156

Contact Us

Powered by

Powered by OJS