A Study on the Photocatalytic and Antimicrobial Activities of Chitosan–ZnO Nanocomposites
J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 9-16
Abstract
ZnO nanoparticles can have their size, crystalline phase and aggregation inhibited by the biocompatible polymer chitosan. The production of ZnO nanoparticles with chitosan assistance was carried out using Sol-gel methodology. The nanoparticles have been studied using XRD, TGA, Surface analysis and HR-TEM. According to the findings, ZnO nanoparticles have a hexagonal shape and a particle size of roughly 91 nm. The synthesized nanoparticles exhibit improved photocatalytic activity for reactive dyes for Congo red when exposed to sunlight. The Langmuir-Hinshelwood (L-H) model revealed that the kinetics followed a pseudo-first-order. Additionally, the antibacterial activity was tested against the gram-negative Escherichia coli bacteria.
Full Text
Reference
Ali, A. M., Muhammad, A., Shafeeq, A., Asghar, H. M. A., Hussain, S. N. and Sattar, H., Doped Metal Oxide (ZnO) and Photocatalysis: a review, J. Pak. Inst. Chem. Eng., 40(1), 11–19 (2012).
Ambrozic, G., Orel, Z. C. and Zigon, M., Microwave-assisted non- aqueous synthesis of ZnO nanoparticles, Mater. Technol., 45(3), 173–177 (2011).
Chatti, R., Rayalu, S. S., Dubey, N., Labhsetwar, N., Devotta, S., Solar-based photoreduction of methyl orange using zeolite sup- ported photocatalytic materials, Sol. Energy Mater. Sol. Cells, 91(2), 180–190 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.08.009
Chen, J. Y., Zhou, P. J., Li, J. L. and Wang, Y., Studies on the photo- catalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light, Carbohydr. Polym., 72(1), 128–132 (2008).
https://doi.org/10.1016/j.carbpol.2007.07.036
Chen, K. J., Fang, T. H., Hung, F. Y., Ji, L. W., Chang, S. J., Young, S. J., Hsiao, Y. J., The crystallization and physical properties of Al-doped ZnO nanoparticles, Appl. Surf. Sci., 254(18), 5791–5795 (2008).
https://doi.org/10.1016/j.apsusc.2008.03.080
Giri, P. K., Bhattacharyya, S., Chetia, B., Kumari, S., Singh, D. K. and Iyer, P. K., High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties, J. Nanosci. Nanotechnol., 12(1), 201–6 (2011).
https://doi.org/10.1166/jnn.2012.5113
Han, D., Cao, J., Yang, S., Yang, J., Wang, B., Liu, Q., Wang, T. and Niu, H., Fabrication of ZnO nanorods/Fe3O4 quantum dots nanocomposites and their solar light photocatalytic performance. J. Mater, Sci. Mater. Electron., 26, 7415–7420 (2015).
https://doi.org/10.1007/s10854-015-3372-x
Jayaseelan, C., Abdul, R. A., Vishnu, K. A., Mar- imuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L. and Bhaskara, R. K. V., Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi, Spectrochim. Acta Part A., 90, 78–84 (2012).
https://doi.org/10.1016/j.saa.2012.01.006
Jothivenkatachalam, K., Prabhu, S., Nithya, A. and Jeganathan, K., Facile synthesis of WO3 with reduced particle size on zeolite and enhanced photocatalytic activity, RSC Adv., 4(41), 21221–21229 (2014).
https://doi.org/10.1039/C4RA01376J
Jothivenkatachalam, K., Prabhu, S., Nithya, A., Chandra M. S. and Jeganathan, K., Solar, visible and UV light photocatalytic activity of CoWO4 for the decolourisation of methyl orange, Desalin. Water Treat., 54(11), 3134–3145 (2015).
https://doi.org/10.1080/19443994.2014.906324
Lin, S. T., Thirumavalavan, M., Jiang, T. Y., Lee, J. F., Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes, Carbohydr. Polym., 105, 1-9 (2014).
https://doi.org/10.1016/j.carbpol.2014.01.017
Lv, J., Gong, W., Huang, K., Zhu, J., Meng, F., Song, X. and Sun, Z., Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method, Superlattices Microstruct., 50(2), 98–106 (2011).
https://doi.org/10.1016/j.spmi.2011.05.003
Marschall, R. and Wang, L., Non-metal doping of transition metal oxides for visible-lightphotocatalysis, Catal. Today, 225, 111-135 (2013).
https://doi.org/10.1016/j.cattod.2013.10.088
Nawi, M. A., Sabar, S., Jawad, A. H., Sheilatina and Wan, N. W. S., Adsorption of Reactive Red 4 by immobilized chitosan on glass plates: towards the design of immobilized TiO2–chitosan syner- gistic photocatalyst-adsorption bilayer system, Biochem. Eng. J., 49(3), 317–325 (2010).
https://doi.org/10.1016/j.bej.2010.01.006
Nithya, A., Jothivenkatachalam, K., Prabhu, S., Jeganathan, K., Chitosan based nanocomposite materials as photocatalyst—a review, Mater. Sci. Forum, 781, 79–94 (2014).
https://doi.org/10.4028/www.scientific.net/MSF.781.79
Rajbongshi, B. M., Ramchiary, A., Jha, B. M. and Samdarshi, S. K., Synthesis and characterization of plasmonic visible active Ag/ ZnO Photocatalyst, J. Mater. Sci. Mater. Electron., 25, 2969–2973 (2014).
https://doi.org/10.1007/s10854-014-1968-1
Rajbongshi, B. M., Samdarshi, S. K. and Boro, B., Multiphasic bi- component TiO2–ZnO nanocomposite: synthesis, characteriza- tion and investigation of photocatalytic activity under different wavelengths of light irradiation, J. Mater. Sci.: Mater. Electron., 26, 377–384 (2015).
https://doi.org/10.1007/s10854-014-2410-4
Ru, J., Huayue, Z., Xiaodong, L., and Ling, X., Visible light photocat- alytic decolourization of C. I. Acid Red 66 by chitosan capped CdS composite nanoparticles, Chem. Eng. J., 152(2), 537–542 (2009).
https://doi.org/10.1016/j.cej.2009.05.037
Sudheesh, K. P. T., Lakshmanan, V., Anilkumar, T. V., Ramya, C., Reshmi, P., Unnikrishnan, A. G., Nair, S. V. and Jayakumar, R., Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation, Appl. Mater. Interfaces, 4(5), 2618–2629 (2012).
https://doi.org/10.1021/am300292v
Suresh, B. K. and Narayanan, V., Hydrothermal synthesis of hydrated zinc oxide nanoparticles and its characterization, Chem. Sci. Trans., 2(1), 33-36 (2013).
https://doi.org/10.7598/cst2013.004
Xiao, S., Liu, L., Lian, J., Solvothermal synthesis of nanocrystalline ZnO with excellent photocatalytic performance, J. Mater. Sci. Mater. Electron., 25, 5518–5523 (2014).
https://doi.org/10.1007/s10854-014-2338-8
Xu, Y. and Langford, C. H., Photoactivity of titanium dioxide sup- ported on MCM41, zeolite X, and zeolite Y, J. Phys. Chem. B, 101, 3115–3121 (1997).
https://doi.org/10.1021/jp962494l
Yang, J., Wang, X., Jiang, T., Li, Y., Ma, Q., Han, J., Chen, J., Wang, J. and Wang, Y., Controllable preparation, growth mechanism and the properties research of ZnO nanocrystal, Superlattices Microstruct., 72, 91-101 (2014).
https://doi.org/10.1016/j.spmi.2014.04.006
Zainal, Z., Hui, L. K., Hussein, M. Z., Abdullah, A. H. and Hamad-neh, I. R., Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process, J. Hazard. Mater., 164(1), 138–145 (2009).
https://doi.org/10.1016/j.jhazmat.2008.07.154
Zhang, Q., Fan, W., Gao, L., Anatase TiO2 nanoparticles immo- bilized on ZnO tetrapods as a highly efficient and easily recy- clable photocatalyst, Appl. Catal. B, 76, 168–173 (2007).
https://doi.org/10.1016/j.apcatb.2007.05.024
Zhao, L., Efficient photocatalyst based on ZnO nanorod arrays/p- type boron-doped-diamond heterojunction. J. Mater. Sci.: Mater. Electron. 26, 1018–1022 (2015).