Open Access

Effect of Manganese Doping in SnO2 Thin Films and its NO2 Gas Sensing Performance

R. Yogasaraswathi, yogasaraswathi.astro@gmail.com
PG and Research Department in Physics, Government Arts College (Autonomous), Coimbatore, TN, India
J. Dheepa PG and Research Department in Physics, Government Arts College (Autonomous), Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 12, No 4 (2023) pp. 1-8

https://doi.org/10.13074/jent.2023.12.234476

PDF


Abstract

By using an automated nebulizer spray pyrolysis technique with varied concentrations of manganese chloride (0 - 3%) in the spray solution of tin chloride, thin films of pure and manganese-doped tin oxides (Mn-SnO2) were deposited. X-ray diffraction investigations indicated that 2% Manganese chloride concentration in the spray solution promoted development along (200) and (220) directions. The preferred growth direction in the (200) and (220) planes decreased with increasing manganese chloride doping concentration (2-3%) in the solution. The surface morphology of the films had changed as a result of adding Manganese as a dopant. Compositional analysis was carried out using EDAX. From UV-Vis spectroscopy, the optical properties of the SnO2 and Mn-SnO2 thin film were observed; the maximum optical absorbance was in the wavelength range of 300 - 400 nm. The concentration of Mn in the films affected the intensity of the photoluminescence emission peak detected at 347 and 392 nm for pure SnO2 and Mn-SnO2 films, respectively. The gas sensing performance of the films was examined by dynamic method against NO2 gas, at an operating temperature of 250 °C and 400 ppm gas concentration. Mn-SnO2 films achieved quick response and recovery times of 17 s and 34 s.

Full Text

Reference


Aboud, A. A., Mukherjee, A., Revaprasadu, N. and Mohamed, A. N., The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique, J. Mater. Res. Technol., 8(2), 2021–2030 (2019).

https://doi.org/10.1016/j.jmrt.2018.10.017

Ajay, K. S., Jatinder, P. S., Babita, S., Sandeep, M., Anjali, S., Monika, T. and Arijit, C., CdS-SnO2 nanocomposite sensor for room temperature detection of NO2 gas, Sens. Technol., 886, 283–289 (2022).

https://doi.org/10.1007/978-3-030-98886-9_22

Azam, A., Ahmed, A. S., Habib, S. S. and Naqvi, A. H., Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles, J. Alloys Compd., 523, 83-87 (2012).

https://doi.org/10.1016/j.jallcom.2012.01.072

Basu, S. and Basu, P. K., Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals, J. Sens., 2009, 1-20 (2009). https://doi.org/10.1155/2009/861968

Buvailo, A. I., Oleksenko, L. P. Maksimovich, N. P., Matushko, I. P., Ripko, A. P., Ruchko, V. P., Effect of SnO2 particle size on the hydrogen sensitivity of adsorption – semiconductor sensors with CoxOy/SnO2 active coating, Theor. Exp. Chem., 46(3), 153–157 (2010).

http://dx.doi.org/10.1007/s11237-010-9132-3

Cheng, P., Wang, Y., Wang, C., Ma, J., Xu, L., Lv, C., Sun, Y., Investigation about doping effects of different noble metals for ethanol gas sensors based on mesoporous In2O3, Nanotechnol., 32(30), 305503 (2021).

https://doi.org/10.1088/1361-6528/abf453

Choi, U. S., Sakai, G., Shimanoe, K. and Yamazoe, N., Sensing properties of SnO2–Co3O4 composites to CO and H2, Sens. Actuators, B, 98(1-2), 166–173 (2004).

http://dx.doi.org/10.1016/j.snb.2003.09.033

Dabbabi, S., Nasr, T. B., Madouri, A., Cavanna, A., Garcia-Loureiro, A., and Kamoun, N., Fabrication and Characterization of Sensitive Room Temperature NO2 Gas Sensor Based on ZnSnO3 Thin Film, Phys. Status Solidi A, 216(16), 1-6 (2019).

https://doi.org/10.1002/pssa.201900205

David, D., Udo, W. and Nicolae, B., Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials, ACS Sens., 4(9), 2228-2249 (2019).

https://doi.org/10.1021/acssensors.9b00975

Dayekh, M. L. and Hussain, S. A., Gas Sensor and Sensitivity, IntechOpen, Chapter 1 (2023).

https://doi.org/10.5772/intechopen.108040

Ganbavle, V., Patil, M. A., Deshmukh, H. P., Rajpure, K. Y., Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature, J. Anal. Appl. Pyrolysis, 107, 233-241 (2014).

https://doi.org/10.1016/j.jaap.2014.03.006

Guan, W., Tang, N., He, K., Hu, X., Li, M. and Li, K. Gas-Sensing Performances of Metal Oxide Nanostructures for Detecting Dissolved Gases: A Mini Review, Front. Chem., 8, 1-5 (2020).

https://doi.org/10.3389/fchem.2020.00076

Haidar, J. A. A., Muthafar, F. A. H. and Mohammed, K. K., Comparative NO2 Sensing Characteristics of SnO2:WO3 Thin Film Against Bulk and Investigation of Optical Properties of the Thin Film, Baghdad Science Journal, 15(2), 227-233 (2018).

https://doi.org/10.21123/bsj.2018.15.2.0227

Inyawilert, K., Wisitsoraat, A., Sriprachaubwong, C., Tuantranont, A., Phanichphant, S. and Liewhiran, C., Rapid ethanol sensor based on electrolytically -exfoliated graphene –loaded flame -made In -doped SnO2 composite film, Sens. Actuators B Chem., 209, 40-55 (2015). https://doi.org/10.1016/j.snb.2014.11.086

Jeong, H. S., Park, M. J., Kwon, S. H., Joo, H. J., Song, S. H., Kwon, H. I., Low temperature NO2 sensing properties of RF-sputtered SnO SnO2 heterojunction thin -film with p -type semiconducting behavior, Ceram. Int., 44(14), 17283-17289 (2018).

https://doi.org/10.1016/j.ceramint.2018.06.189

Jose, A. S., Prajwal, K., Chowdhury, P. and Barshilia, H. C., Sputter deposited p -NiO/n -SnO2 porous thin film heterojunction based NO2 sensor with high selectivity and fast response, Sens Actuators B Chem., 310, 1-10 (2020).

https://doi.org/10.1016/j.snb.2020.127830

Kamble, D. L., Namdev, S. H., Patil, V. L., Patil, P. S., and Kadam, L. D., Characterization and NO2 gas sensing properties of Spray Pyrolyzed SnO2 Thin Films, J. Anal. Appl. Pyrolysis, 127, 38-46 (2017).

https://doi.org/10.1016/j.jaap.2017.09.004

Kanan, S. M., El-Kadri, O. M., Abu-Yousef, I. A. and Kanan, M. C., Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection, Sens., 9(10), 8158-8196 (2009).

https://doi.org/10.3390/s91008158

Kaur, J., Vankar, V. D. and Bhatnagar, M. C., Role of surface properties of MoO3-doped SnO2 thin films on NO2 gas sensing, Thin Solid Films, 518(14), 3982-3987 (2010).

http://dx.doi.org/10.1016%2Fj.tsf.2009.11.016

Kiruthiga, G., Rajni, K.S., Geethanjali, N., Raguram, T., Nandhakumar, E. and Senthilkumar, N., SnO2: Investigation of optical, structural, and electrical properties of transparent conductive oxide thin films prepared by nebulized spray pyrolysis for photovoltaic applications, Inorg. Chem. Commun., 145, 109968 (2022).

https://doi.org/10.1016/j.inoche.2022.109968

Korotcenkov, G., Macsanov, V., Brinzari, V., Tolstoy, V., Schwank, J., Cornet, A. and Morante, J., Influence of Cu, Fe, Co, and Mn oxide nanoclusters on sensing behavior of SnO2 films, Thin Solid Films, 467(1-2), 209-214 (2004).

https://doi.org/10.1016/j.tsf.2004.03.028

Kumar, K. D. A., Valanarasu, S., Jeyadheepan, K., Hyun-Seok K. and Dhanasekaran, V., Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics, J. Mater. Sci: Mater. Electron., 29, 3648–3656 (2017).

https://doi.org/10.1007/s10854-017-8295-2

Kumar, V., Srivastava, S. K., Kiran, J., Cobalt doped SnO2 thick film gas sensors: conductance and gas response characteristics for LPG and CNG gas, Sensors and Transducers Journal, 101(2), 60–72 (2009).

Lee, S., Tsai, P. and Chen, H., Comparison study of SnO2 thin- and thick-film gas sensors, Sens. Actuators, B, 67(1-2), 122-127 (2000). https://doi.org/10.1016/S0925-4005(00)00390-7

Leghrib, R., Felten, A., Pireaux, J. J. and Llobet, E., Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature, Thin Solid Films, 520(3), 966-970 (2011).

https://doi.org/10.1016/j.tsf.2011.04.186

Lichen, L. and Avelino, C., Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev., 118(10), 4981-5079(2018).

https://doi.org/10.1021/acs.chemrev.7b00776

Liu, C., Kuang, Q., Xie, Z. and Zheng, L., The effect of noble metal (Au, Pd, Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra, Cryst. Eng. Comm., 17(33), 6308-6313 (2015).

https://doi.org/10.1039/C5CE01162K

Liua, L., C. Guo, S. Li, L. Wang, Q. Dong, W. Li, Improved H2 sensing properties of Co-doped SnO2 nanofibers, Sens. Actuators, B, 150, 806-810 (2010).

https://doi.org/10.1016/j.snb.2010.07.022

Maheswari, S., Karunakaran, M., Kasirajan, K., Bruno, C. L., Boomi, P., Yttrium - Substituted SnO2 thin films and its gas sensing activity against NH3 gas: Characterization and sensitivity evaluation, Sens. Actuators, A, 315, 1-10 (2020).

https://doi.org/10.1016/j.sna.2020.112303

Mariappan, R., Ponnuswamy, V., Suresh, P., Suresh, R., Ragavendar, M. and Sankar, C., Deposition and characterization of pure and Cd doped SnO2 thin films by the nebulizer spray pyrolysis (NSP) technique, Mater. Sci. Semicond. Process., 16(3), 825-832 (2013).

https://doi.org/10.1016/j.mssp.2013.01.006

Myung, S. C., Ali, M., Han, G. N., Sangwoo, K., Dong, E. K., Kyu, H. L., Changhyun, J. and Sun, W. C., Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2-x nanoparticles for selective NO2 gas sensing, Sens. Actuators, B, 340, 1-14(2021).

https://doi.org/10.1016/j.snb.2021.129984

Navale, S., Shahbaz, M., Mirzaei, A., Kim, S. S. and Kim, H. W., Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview, Sens., 21(19), 6454 (2021).

https://doi.org/10.3390/s21196454

Navale, S., Shahbaz, M., Mirzaei, A., Kim, S. S., Kim, H. W., Effect of Ag Addition on the Gas-Sensing Properties of Nanostructured Resistive-Based Gas Sensors: An Overview, Sensors, 21(19), 1-28 (2021).

https://doi.org/10.3390/s21196454

Palanichamy, S., Raj, M. J., Deva, A. K. K., Satheesh, K. P. S., Pandiarajan, S., Amalraj, L., Physical properties of rare earth metal (Gd3+) doped SnO2 thin films prepared by simplified spray pyrolysis technique using nebulizer, Optik, 194, 1-12 (2019).

https://doi.org/10.1016/j.ijleo.2019.05.093

Said, N. D. M., Mohd, Z. S., Nafarizal, N., Hashim, S., Feri, A., Anis, S. B., Marlia, M., Difference in structural and chemical properties of sol–gel spin coated Al doped TiO2, Y doped TiO2 and Gd doped TiO2 based on trivalent dopants, RSC Adv., 8(52) 29686–29697 (2018).

https://doi.org/10.1039/C8RA03950J

Salah, E., Yasseen, K., Hadi, E, Chiad, S., Habubi, N., Haneen, K., Sensitivity of Nanostructured Mn-Doped Cobalt Oxide Films for Gas Sensor Application, Nano Biomed. Eng., 12(3), 205-213 (2020).

https://doi.org/10.5101/nbe.v12i3.p205-213

Saruhan, B., Lontio, F. R. and Nahirniak, S., Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics, Front. Sens., 2, 1-24 (2021).

https://doi.org/10.3389/fsens.2021.657931

Sureshkumar, S., Venkatachalapathy, B. and Sridhar, T M., Enhanced H2S gas sensing properties of Mn doped ZnO nanoparticles – an impedance spectroscopic investigation, Mater. Res. Express, 6(7), 1-22 (2019).

https://doi.org/10.1088/2053-1591/ab0eef

Tamil, I. J., Rajalakshmi, P. and Oommen, R., Nebulized spray pyrolysis: a new method for synthesis of graphene film and their characteristics, Surf. Coat. Technol., 307, 65-72 (2016).

https://doi.org/10.1016/j.surfcoat.2016.08.051

Tomatis, M., Xu, H., Wei, C., Bishop, M. T., He, J., Wang, C., Zhao, M., Xiao, H., Yu, H., Behera, S. N., Tang, B., A Comparative Study of Mn/Co Binary Metal Catalysts Supported on Two Commercial Diatomaceous Earths for Oxidation of Benzene, Catal., 8(3), 1-22 (2018). https://doi.org/10.3390/catal8030111

Vijendra, S. B., Mirabbos, H., Mahesh, K., Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review, Energy Rep., 6(4), 46-62(2020).

https://doi.org/10.1016/j.egyr.2019.08.070

Vinila, V. S., Jayakumari, I., Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems, In Micro and Nano Technologies, Design, Fabrication, and Characterization of Multifunctional Nanomaterials, Elsevier, 319-341 (2022).

https://doi.org/10.1016/B978-0-12-820558-7.00022-4

Wang, C. N., Li, Y. L., Gong, F. L., Zhang, Y. H., Fang, S. M., Zhang, H. L., Chem. Rec., 20(12), 1553-1567 (2020).

https://doi.org/10.1002/tcr.202000088

Wang, C., Yin, L., Zhang, L., Xiang, D. and Gao, R., Metal oxide gas sensors: sensitivity and influencing factors, Sens., 10(3), 2088-2106 (2010). https://doi.org/10.3390/s100302088

Wen, T. L., Xiao, D. Z. and Xin, G., Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2, Sens. Actuators, B, 244, 509-521(2017). https://doi.org/10.1016/j.snb.2017.01.022

Wenqian, Y., Kunmeng, Z., Yi, C., Yanhan, L., Tao, D., Sheng, C., Xiaodong, S., NO2 detection and redox capacitance reaction of Ag doped SnO2/rGO aerogel at room temperature, J. Alloys Compd., 886, 1-9 (2021).

https://doi.org/10.1016/j.jallcom.2021.161287

Yamada, Y., Seno, Y., Masuoka, Y., Yamashita, K., Nitrogen oxides sensing characteristics of Zn2SnO4 thin fim, Sens. Actuators B - Chem., 49(3), 248–252 (1998).

https://doi.org/10.1016/S0925-4005(98)00135-X

Yamazoe, N. and Miura, N., Some basic aspects of semiconductor gas sensors, Chem. Sens. Technol., 4, 1942 (1992).

Yamazoe, N., Kurokawa, Y. and Seiyama, T., Effects of additives on semiconductor gas sensors, Sens. Actuators, 4, 283–289 (1983). https://doi.org/10.1016/0250-6874(83)85034-3

Yuan, C. L. and Yu, W. H., Design of thin-film configuration of SnO2–Ag2O

composites for NO2 gas-sensing applications, The Nanotechnology Reviews, 11(1), 1842-1853 (2022).

https://doi.org/10.1515/ntrev-2022-0111

Ze, W., Lei, Z. A., Jingzhao, W., Rui, Z., Pengfei, M., Jianan, W. and Wei, Y., Advances in functional guest materials for resistive gas sensors, RSC Adv., 12(38), 24614-24632 (2022).

https://doi.org/10.1039/D2RA04063H

Zoleikha, H., Reza, T. L., Fereshteh, R. A., 3 - Identification and analytical methods,Editor(s): Ali Maleki, In Micro and Nano Technologies, Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions, Elsevier, 33-51 (2022),

https://doi.org/10.1016/B978-0-12-824527-9.00001-0

Contact Us

Powered by

Powered by OJS