Open Access

Theoretical Design of Highly Sensitive Ag-Ni-Thiol-based Hybrid SPR Biosensor for Viral Detection

M. Muthumanicam, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, TN, India P. Maheswari, Department of Physics, PSGR Krishnammal College for Women, Coimbatore, TN, India A. Vibisha, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India C. L. Prabhakar, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, TN, India S. Ponnan, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, TN, India Z. Jaroszewicz, Łukasiewicz Research Network - Tele and Radio Research Institute, Warsaw, Poland K.B. Rajesh rajeskb@gmail.com
Department of Physics, Chikkana Government Arts College, Tiruppur, TN, India


J. Environ. Nanotechnol., Volume 12, No 3 (2023) pp. 14-18

https://doi.org/10.13074/jent.2023.09.233472

PDF


Abstract

In this work, a biosensor under Kretschmann configuration with enhanced sensitivity utilizing thiol on the bimetallic layers of magnetic material nickel (Ni) over silver (Ag) is proposed and analyzed numerically using the Fresnel equation and the Transfer Matrix Method (TMM). Results have shown that such a hybrid configuration with a well-optimized thickness of a bimetallic layer of Ni over Ag and the proper utilization of thiol with fixed thickness can increase the sensitivity substantially higher than the conventional sensor. The minimum reflectivity, FWHM of the Surface Plasmon Resonance (SPR) curve and sensitivity were examined in order to optimize the thickness of metal layers for the fixed thickness of the thiol. It is observed that sensitivity as high as 321º/RIU is obtained for the configuration consisting of 15 nm of Ni over 40 nm thickness of Ag added with a 4 nm thickness of thiol. Such high-sensitivity sensors can be used for protein-protein interaction and virus detection in the field of biosensing applications.

Full Text

Reference


Almawgani, A. H. M., Daher, M. G., Taya, S. A., Olaimat, M. M., Alhawari, A. R. H. and Colak, I., Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals, Plasmonics, 17(4), 1751-1764 (2022a). http://dx.doi.org/10.1007/s11468-022-01662-3

Almawgani, A. H. M., Daher, M. G., Taya, S. A., Mashagbeh, M. and Colak, I., Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure, Biosensors, 12(7), 1-13 (2022b).

https://doi.org/10.3390/bios12070535

Alvarez, B. and Salinas, G., Basic concepts of thiol chemistry and biology, B. Alvarez, M. Comini, G. Salinas and M. Trujillo, Eds., 1-18, Academic Press, (2022).

https://doi.org/10.1016/B978-0-323-90219-9.00026-1

Daher, M. G., Trabelsl, Y., Ahmed, N. M., Prajapati, Y. K., Sorathiya, V., Shaik, H. A., Priya, P. P., Faragallah, O. S., and Rashed, A. N. Z., Detection of Basal Cancer Cells Using Photodetector Based on a Novel Surface Plasmon Resonance Nanostructure Employing Perovskite Layer with an Ultra High Sensitivity, Plasmonics, 17, 2365-2373 (2022).

http://dx.doi.org/10.1007/s11468-022-01727-3

Daher, M. G., Trabelsi, Y., Prajapati, Y. K., Panda, A., Ahmed, N. M. and Rashed, A. N. Z., Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure, Opt. Quant. Electron, 55, 1-15 (2023).

https://doi.org/10.1007/s11082-022-04466-1

Han, L., Chen, Z., Huang, T., Ding, H. and Wu, C., Sensitivity Enhancement of Ag-ITO-TMDCs-Graphene Nanostructure Based on Surface Plasmon Resonance Biosensors, Plasmonics, 15(5) 693-701 (2020).

https://doi.org/10.1007/s11468-019-01079-5

Jha, R. and Sharma, A., High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared, Opt. Lett., 34(6), 749-751 (2009).

https://doi.org/10.1364/OL.34.000749

Karki, B., Uniyal, A., Chauhan, B., and Pal, A., Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region, J. Comp. Electronics, 21, 445-452 (2022).

http://dx.doi.org/10.21203/rs.3.rs-854012/v1

Kumar, R., Pal, S., Verma, A., Prajapati, Y.K. and Saini, J.P., Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene, Superlattices Microstruct., 145, 1-20 (2020).

https://doi.org/10.1016/j.spmi.2020.106591

Moznuzzaman, M., Islam, M. R. and Khan, I., Effect of layer thickness variation on sensitivity: An SPR based sensor for formalin detection, Sens. Bio-Sens. Res., 32, 1-10 (2021).

http://dx.doi.org/10.1016/j.sbsr.2021.100419

Maharana, P. K. and Jha, R., Chalcogenide prism and graphene multilayer-based surface plasmon resonance affinity biosensor for high performance, Sens. Actuators B, 169, 161–166 (2012).

http://dx.doi.org/10.1016/j.snb.2012.04.051

Maharana, P. K., Bharadwaj, S. and Jha, R., Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism, J. Appl. Phys., 114(1), 1-4 (2013).

https://doi.org/10.1063/1.4812732

Maheswari, P., Subanya, S., Ravi, V., Rajesh, K. B., Jha, R. and Jaroszewicz, Z., Platinum Layers Sandwiched Between Black Phosphorous and Graphene for Enhanced SPR Sensor Performance, Plasmonics, 17, 213-222 (2021).

https://doi.org/10.1007/s11468-021-01507-5

Malmqvist, M., BIACORE: an affinity biosensor system for characterization of biomolecular interactions, Biochem. Soc. Trans., 27(2), 335–340 (1999).

http://dx.doi.org/10.1042/bst0270335

Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. and Qu erry, M. R., Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt., 24(24), 4493-4499 (1985).

https://doi.org/10.1364/AO.24.004493

Sandstrom, P., Boncheva, M., and Akerman, B., Nonspecific and Thiol-Specific Binding of DNA to Gold Nanoparticles, Langmuir, 19(18), 7537-7543 (2003).

https://doi.org/10.1021/la034348u

Shah, K. and Sharma, N. K., SPR based Fiber Optic Sensor Utilizing Thin Film of Nickel, In AIP Conference Proceedings, AIP Publishing LLC, College Park, MD, USA, 2009, 020040-3 (2018).

https://doi.org/10.1063/1.5052109

Srivastava, T., Jha, R. and Das, R., High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides, IEEE Photonics Technol. Lett., 23(20), 1448 – 1450 (2011).

http://dx.doi.org/10.1109/LPT.2011.2162828

Uddin, S. M. A., Chowdhury, S. S. and Kabir, E., Numerical Analysis of a Highly Sensitive Surface Plasmon Resonance Sensor for SARS-CoV-2 Detection, Plasmonics, 16, 2025-2037 (2021).

https://doi.org/10.1007/s11468-021-01455-0

Verma, R., Gupta, B. D. and Jha, R., Sensitivity enhancement of a surface plasmon resonance-based biomolecules sensor using graphene and silicon layers, Sens. Actuators B, 160, 623-631 (2011).

https://doi.org/10.1016/j.snb.2011.08.039

Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y. and Fan, D., Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor, Sens. Actuators B Chem., 249, 542-548 (2017). https://doi.org/10.1016/j.snb.2017.04.110

Yuan, X.-C., Ong, B. H., Tan, Y. G., Zhang, D. W., Irawan, R. and Tjin, S. C., Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers, J. Opt. A: Pure Appl. Opt., 8(11), 959–963 (2006).

http://dx.doi.org/10.1088/1464-4258/8/11/005

Contact Us

Powered by

Powered by OJS