Open Access

Effective Bio-mediated Nanoparticles for Bioremediation of Toxic Metal Ions from Wastewater – A Review

V. Yamini, Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, TN, India V. Devi Rajeswari vdevirajeswari@vit.ac.in
Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, TN, India


J. Environ. Nanotechnol., Volume 12, No 2 (2023) pp. 12-33

https://doi.org/10.13074/jent.2023.06.232467

PDF


Abstract

Water tainted with colours, heavy metal ions and biological toxins, contributes to eutrophication, which in turn contributes to a variety of fatal diseases in humans and other animals, owing to the fact that water purification equipment and methods are not cheap. Due to this, there is a pressing need for economically viable wastewater treatment components. Eco-friendly nanomaterials, highly efficient and selective, renewable, earth-abundant and stable, have emerged as a major priority, overcoming a number of challenges and restrictions. Currently, the combination of nanomaterials and biomolecules from plants, including polyphenols, amines and other components, as well as intracellular and extracellular enzymes found in microbes, has become more significant in bioremediation. Biogenic nanoparticles are favoured because they are easy to expand for large-scale biosynthesis, maintain stability for an extended period, consume less time, are eco-friendly, and do not produce any detrimental by-products. The processes of nano-bioremediation and wastewater treatment are discussed in detail in this review. It primarily focuses on synthesizing, characterizing and applying bio-mediated nanoparticles, which actively remove heavy metal ions from wastewater, without adversely affecting individuals or other living things, especially in aquatic environments.

Full Text

Reference


Agarwal, M., and Singh, K., Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desalin., 7(4), 387–419 (2017).

https://doi.org/10.2166/wrd.2016.104

Akpor, O. B., Wastewater effluent discharge: Effects and treatment processes, In 3rd International Conference on Chemical, Biological and Environmental Engineering IPCBEE, IACSIT Press, 20, (2021).

Alexakis, D., Human health risk assessment associated with Co, Cr, Mn, Ni, and V contents in agricultural soils from a Mediterranean site, Arch. Agron. Soil Sci., 62(3), 359–373 (2016).

https://doi.org/10.1080/03650340.2015.1062088

Alsharari, S., Tayel, A., and Moussa, S., Soil emendation with nano-fungal chitosan for heavy metals biosorption, Int. J. Biol. Macromol., 118, 2265–2268 (2018).

https://doi.org/10.1016/j.ijbiomac.2018.07.103

Alswata, A., Ahmad, M., Al-Hada, N., Kamari, H., Hussein, M., and Ibrahim, N, Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water, Results Phys., 7, 723–731 (2017).

https://doi.org/10.1016/j.rinp.2017.01.036

Amin, R., Mahmoud, R., Gadelhak, Y., and El-Ela, F., Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents, Environ. Nanotechnol. Monit. Manage., 16, (2021).

https://doi.org/10.1016/j.enmm.2021.100461

Babu, P. J., Sharma, P., Kalita, M. C., and Bora, U., Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract, Front. Mater. Sci., 5(4), 379–387 (2011).

https://doi.org/10.1007/S11706-011-0153-1

Bai, Y., Yang, T., Liang, J., and Qu, J., The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems, Water Res., 98, 119–127 (2016).

https://doi.org/10.1016/j.watres.2016.03.068

Balamurugan, M., Saravanan, S., and Soga, T., Synthesis of iron oxide nanoparticles by using Eucalyptus globulus plant extract, e-J. Surf. Sci. Nanotechnol, 12, 363–367 (2014).

https://doi.org/10.1380/ejssnt.2014.363

Bankar, A. V., Kumar, A. R., and Zinjarde, S. S., Environmental and industrial applications of Yarrowia lipolytica, Appl. Microbiol. Biotechnol., 84(5), 847–865 (2009).

https://doi.org/10.1007/S00253-009-2156-8

Barakat, M., New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4(4), 361–377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019

Baruah, A., Chaudhary, V., Malik, R., and Tomer, V., Nanotechnology based solutions for wastewater treatment, In Nanotechnology in Water and Wastewater, 337–368 (2019).

https://doi.org/10.1016/B978-0-12-813902-8.00017-4

Benazir, J., Suganthi, R., Rajvel, D., Pooja, M., and Mathithumilan, B., Bioremediation of chromium in tannery effluent by microbial consortia, African Journal of Biotechnology, 9(21), 3140–3143 (2010).

Bhargava, A., Jain, N., Gangopadhyay, S., and Panwar, J., Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications, Process Biochem., 50(8), 1293–1300 (2015).

https://doi.org/10.1016/j.procbio.2015.04.012

Campos, A. F. C., Aquino, R., Cotta, T. A. P. G., Tourinho, F. A., and Depeyrot, J., Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications, Bull. Mater. Sci., 34(7), 1357–1361 (2011).

https://doi.org/10.1007/S12034-011-0328-5

Castro, L., Blázquez, M., González, F., Munoz, J., & Ballester, A., Heavy metal adsorption using biogenic iron compounds, Hydrometallurgy, 179, 44–51 (2018).

https://doi.org/10.1016/j.hydromet.2018.05.029

Chen, W., Liu, Q., Tian, S., and Zhao, X., Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst, Appl. Surf. Sci., 470, 807–816 (2019).

https://doi.org/10.1016/j.apsusc.2018.11.206

Chidambaram, D., Hennebel, T., Taghavi, S., Mast, J., Boon, N., Verstraete, W., and Fitts, J., Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate, Environ. Sci. Technol., 44(19), 7635–7640 (2010).

https://doi.org/10.1021/es101559r

Crane, R., Dickinson, M., Popescu, I., and Scott, T., Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water, Water Res., 45(9), 2931–2942 (2011).

https://doi.org/10.1016/j.watres.2011.03.012

Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., Dalila, L. M. A., Sarma, S. J., and Brar, S. K., Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects, Nanotechnol. Environ. Eng., 2(1), 1-21 (2017).

https://doi.org/10.1007/S41204-017-0029-4

Debnath, B., Majumdar, M., Bhowmik, K., Debnath, A., & Roy, D., The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technologym, J. Environ. Manage., 261, 1-13 (2020).

https://doi.org/10.1016/j.jenvman.2020.110235

Deplanche, K., and Macaskie, L. E., Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans, Biotechnol. Bioeng., 99(5), 1055–1064 (2008).

https://doi.org/10.1002/BIT.21688

Dhillon, G. S., Brar, S. K., Kaur, S., and Verma, M., Green approach for nanoparticle biosynthesis by fungi: Current trends and applications, Crit. Rev. Biotechnol., 32(1), 49–73 (2012).

https://doi.org/10.3109/07388551.2010.550568

Ding, H., Luo, X., Zhang, X., and Yang, H., Alginate-immobilized Aspergillus niger: Characterization and biosorption removal of thorium ions from radioactive wastewater, Colloids Surf., A, 562, 186–195 (2019).

https://doi.org/10.1016/j.colsurfa.2018.11.032

Du, L., Jiang, H., Liu, X., and Wang, E., Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin, Electrochem. Commun., 9(5), 1165–1170 (2007).

https://doi.org/10.1016/j.elecom.2007.01.007

Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H., and Esposito, E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnol., 3, 1–17 (2005).

https://doi.org/10.1186/1477-3155-3-8

Edison, T. N. J. I., Atchudan, R., Kamal, C., and Lee, Y. R., Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue, Bioprocess. Biosyst. Eng., 39(9), 1401–1408 (2016).

https://doi.org/10.1007/S00449-016-1616-7

El-Gamal, M., Salem, S., and Abdo, A., Biosynthesis, characterization, and antimicrobial activities of silver nanoparticles synthesized by endophytic Streptomyces sp., J. Biotechnol., 56, 69–85 (2018).

https://doi.org/10.1007/s00449-014-1205-6

El-Kemary, M., El-Shamy, H., & El-Mehasseb, I., Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles, J. Lumin., 130(12), 2327–2331 (2010).

https://doi.org/10.1016/j.jlumin.2010.07.013

Ersan, G., Apul, O., Perreault, F., and Karanfil, T., Adsorption of organic contaminants by graphene nanosheets: A review, Water Res., 126, 385–398 (2017).

https://doi.org/10.1016/j.watres.2017.08.010

Fang, X., Wang, Y., Wang, Z., Jiang, Z., and Dong, M., Microorganism assisted synthesized nanoparticles for catalytic applications, Energies, 12(1), 190 (2019).

https://doi.org/10.3390/en12010190

Fouda, A., Saad, E., Salem, S., and Shaheen, T., In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications, Microb. Pathogen., 125, 252–261 (2018).

https://doi.org/10.1016/j.micpath.2018.09.030

Fuwad, A., Ryu, H., Malmstadt, N., Kim, S., and Jeon, T., Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination, 458, 97–115 (2019).

https://doi.org/10.1016/j.desal.2019.02.003

Gautam, M., Kim, J. O., and Yong, C. S., Fabrication of aerosol-based nanoparticles and their applications in biomedical fields, J. Pharm. Invest., 51(4), 361–375 (2021).

https://doi.org/10.1007/S40005-021-00523-1

Gautam, P., Singh, A., Misra, K., Sahoo, A., and Samanta, S., Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment, Australas. J. Environ. Manage., 231, 734–748 (2019).

https://doi.org/10.1016/j.jenvman.2018.10.104

Gopalakrishnan, I., Sugaraj Samuel, R., & Sridharan, K., Nanomaterials-Based Adsorbents for Water and Wastewater Treatments, Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based Approach, 89–98 (2018).

https://doi.org/10.1007/978-3-319-71327-4_11

Govarthanan, M., Jeon, C., Jeon, Y., Kwon, J., Bae, H., and Kim, W., Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles, Int. J. Biol. Macromol., 162, 1241–1249 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.227

Grasso, G., Zane, D., & Dragone, R., Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11 (2019).

https://doi.org/10.3390/nano10010011

Gupta, V., & Nayak, A., Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J., 180, 81–90 (2012).

https://doi.org/10.1016/j.cej.2011.11.006

Ha, C., Zhu, N., Shang, R., Shi, C., Cui, J., Sohoo, I., Ihsanullah Sohoo a, Pingxiao Wu and Cao, Y., Biorecovery of palladium as nanoparticles by Enterococcus faecalis and its catalysis for chromate reduction, Chem. Eng. J, 288, 246–254 (2016).

https://doi.org/10.1016/j.cej.2015.12.015

Hasan, A., Morshed, M., Memic, A., Hassan, S., Webster, T., and Marei, H., Nanoparticles in tissue engineering: Applications, challenges and prospects, Int. J. Nanomed., 13, 5637 (2018).

https://doi.org/10.2147%2FIJN.S153758

Herlekar, M., Barve, S., and Kumar, R., Plant-mediated green synthesis of iron nanoparticles, J. Nanopart., 2014, 01-09 (2014).

http://dx.doi.org/10.1155/2014/140614

Hidangmayum, A., Debnath, A., Guru, A., Singh, B. N., Upadhyay, S. K., and Dwivedi, P., Mechanistic and recent updates in nano-bioremediation for developing green technology to alleviate agricultural contaminants, Int. J. Environ. Sci. Technol., 1–26 (2022).

https://doi.org/10.1007/S13762-022-04560-7

Hulikere, M., and Joshi, C., Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus-Cladosporium cladosporioides, Process Biochem., 82, 199–204 (2019).

https://doi.org/10.1016/j.procbio.2019.04.011

Hulkoti, N., and Taranath, T., Biosynthesis of nanoparticles using microbes—a review, Colloids Surf., B, 121, 474–483 (2014). https://doi.org/10.1016/j.colsurfb.2014.05.027

Hussain, T., Akhter, N., Nadeem, R., Rashid, U., Noreen, S., Anjum, S., Ullah, S., Hussain, H. R., Ashfaq, A., Perveen, S., A. Alharthi, F., and Kazerooni, E. A., Biogenic synthesis of date stones biochar-based zirconium oxide nanocomposite for the removal of hexavalent chromium from aqueous solution, Appl. Nanosci. (Switzerland), 1–14 (2022).

https://doi.org/10.1007/S13204-022-02599-Z

Ingale, A., and Chaudhari, A., Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach, J. Nanomed Nanotechol., 4(2), 1–7 (2013).

http://dx.doi.org/10.4172/2157-7439.1000165

Inyinbor Adejumoke, A., Adebesin Babatunde, O., Oluyori Abimbola, P., Adelani Akande Tabitha, A., Dada Adewumi, O., and Oreofe Toyin, A., Water pollution: effects, prevention, and climatic impact, Water Challenges of an Urbanizing World, 33, 33-47 (2018).

Jain, K., The role of nanobiotechnology in drug discovery, Drug Discovery Today, 10(21), 1435–1442 (2005).

https://doi.org/10.1016/S1359-6446(05)03573-7

Jain, K., Patel, A. S., Pardhi, V. P., Jeet, S., Flora, S., Capela, I., and Kamali, M., Nanotechnology in wastewater management: a new paradigm towards wastewater treatment, Mol., 26(6), 1-26 (2021).

https://doi.org/10.3390/molecules26061797

Jena, J., Pradhan, N., Dash, B., Sukla, L., and Panda, P., Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity, Int. J. Nanomater Biostruct., 3(1), 1–8 (2013).

Jhaveri, J., and Murthy, Z., A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalin., 379, 137–154 (2016).

https://doi.org/10.1016/j.desal.2015.11.009

Ji, C., Nguyen, L., Hou, J., Hai, F., and Chen, V., Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol., 178, 215–223 (2017).

https://doi.org/10.1016/j.seppur.2017.01.043

Kapahi, M., and Sachdeva, S., Bioremediation options for heavy metal pollution, Journal of Health and Pollution, 9(24), 1-20 (2019). https://doi.org/10.5696/2156-9614-9.24.191203

Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., and Alshareef, S. A., Exploration of Microbial Factories for Synthesis of Nanoparticles – A Sustainable Approach for Bioremediation of Environmental Contaminants, Front. Microbiol., 12, 658294 (2021).

https://doi.org/10.3389/FMICB.2021.658294/FULL

Khan, F., Shariq, M., Asif, M., Siddiqui, M., Malan, P., and Ahmad, F., Green nanotechnology: plant-mediated nanoparticle synthesis and application, Nanomater., 12(4), 1-22 (2022).

https://doi.org/10.3390/nano12040673

Kinuthia, G., Ngure, V., Beti, D., Lugalia, R., Wangila, A., and Kamau, L., Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication, Sci. Rep., 10(1), 8434 (2020).

https://doi.org/10.1038/s41598-020-65359-5

Koul, B., Poonia, A. K., Yadav, D., and Jin, J. O., Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects, Biomol., 11(6) , 1-33 (2021).

https://doi.org/10.3390/biom11060886

Koul, B., and Taak, P., Biotechnological strategies for effective remediation of polluted soils, Springer (2018).

Krstic, V., Urosevic, T., and Pesovski, B., A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci., 192, 273–287 (2018).

https://doi.org/10.1016/j.ces.2018.07.022

Kumar, D., Palanichamy, V., and Roopan, S., Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity, Spectrochim. Acta, Part A, 127, 168–171 (2014).

https://doi.org/10.1016/j.saa.2014.02.058

Kumar, H., Sinha, S. K., Goud, V. V., & Das, S., Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01, J. Environ. Health Sci. Eng., 17(2), 1001–1016 (2019).

https://doi.org/10.1007/S40201-019-00415-5

Kumar, K., Muralidhara, H., NAyaka, Y., Hanumanthappa, H., Veena, M., and Kumar, S., ZnO-NiO nanocomposites as highly recyclable adsorbent for effective removal of Pb (II) and Cd (II) from aqueous solution. In International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, 95–101 (2013).

https://doi.org/10.1109/ICANMEET.2013.6609244

Kumar, P., Kumar, A., and Kumar, R., Phytoremediation and Nanoremediation, New Frontiers of Nanomaterials in Environmental Science, 281–297 (2021).

https://doi.org/10.1007/978-981-15-9239-3_13

Kumar, S., Ahlawat, W., Bhanjana, G., Heydarifard, S., Nazhad, M., and Dilbaghi, N., Nanotechnology-based water treatment strategies, Journal of Nanoscience and Nanotechnology, 14(2), 1838–1858 (2014).

https://doi.org/10.1166/jnn.2014.9050

Kumar, V., Kumar, P., Pournara, A., Vellingiri, K., and Kim, K., Nanomaterials for the sensing of narcotics: Challenges and opportunities, TrAC, Trends Anal. Chem., 106, 84–115 (2018).

https://doi.org/10.1016/j.trac.2018.07.003

Kumaresan, M., Anand, K., Govindaraju, K., Tamilselvan, S., and Kumar, V., Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria, Microb. Pathogen., 124, 311–315 (2018).

https://doi.org/10.1016/j.micpath.2018.08.060

Kumari, V., Kaushal, S., and Singh, P., Green synthesis of a CuO/rGO nanocomposite using a Terminalia arjuna bark extract and its catalytic activity for the purification of water, Mater. Adv., 3(4), 2170–2184 (2022).

https://doi.org/10.1039/D1MA00993A

Kumari, V., and Tripathi, A. K., Remediation of heavy metals in pharmaceutical effluent with the help of Bacillus cereus-based green-synthesized silver nanoparticles supported on alumina, Appl. Nanosci. (Switzerland), 10(6), 1709–1719 (2020).

https://doi.org/10.1007/S13204-020-01351-9

Lee, H., Lee, G., Jang, N., Yun, J., Song, J., and Kim, B., Biological synthesis of copper nanoparticles using plant extract, Nanotechnol., 1(1), 371–374 (2011).

Liu, Y., Jin, X., and Chen, Z., The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr (VI), Sci. Total Environ., 627, 470–479 (2018).

https://doi.org/10.1016/j.scitotenv.2018.01.241

Lunge, S., Singh, S., and Sinha, A., Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal, J. Magn. Magn. Mater., 356, 21–31 (2014).

https://doi.org/10.1016/j.jmmm.2013.12.008

Mahanty, S., Chatterjee, S., Ghosh, S., Tudu, P., Gaine, T., Bakshi, M., Surajit, D., Papita, D., Subarna, B., Sudipta, B. and Chaudhuri, P., Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive, J. Water Process Eng., 37, 101426 (2020).

https://doi.org/10.1016/j.jwpe.2020.101426

Mittal, A., Chisti, Y., and Banerjee, U., Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv., 31(2), 346–356 (2013). https://doi.org/10.1016/j.biotechadv.2013.01.003

Mohanpuria, P., Rana, N. K., and Yadav, S. K., Biosynthesis of nanoparticles: Technological concepts and future applications, J. Nanopart. Res., 10(3), 507–517 (2008).

https://doi.org/10.1007/S11051-007-9275-X

Mohanraj, R., Gnanamangai, B., Poornima, S., Oviyaa, V., Ramesh, K., Vijayalakshmi, G., and Robinson, J., Decolourisation efficiency of immobilized silica nanoparticles synthesized by actinomycetes, Materials Today: Proceedings, 48, 129–135 (2022).

https://doi.org/10.1016/j.matpr.2020.04.139

Moitra, P., Alafeef, M., Alafeef, M., Alafeef, M., Dighe, K., Frieman, M. B., Pan, D., Pan, D., and Pan, D., Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles, ACS Nano, 14(6), 7617–7627 (2020).

https://doi.org/10.1021/ACSNANO.0C03822

Moulton, M., Braydich-Stolle, L., Nadagouda, M., Kunzelman, S., Hussain, S., and Varma, R., Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols, Nanoscale, 2(5), 763–770 (2010).

https://doi.org/10.1039/C0NR00046A

Mughal, B., Zaidi, S., Zhang, X., and Hassan, S., Biogenic nanoparticles: Synthesis, characterisation and applications, Applied Sciences, 11(6), 2598 (2021).

https://doi.org/10.3390/app11062598

Mukherjee, D., Ghosh, S., Majumdar, S., and Annapurna, K., Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management, J. Environ. Chem. Eng., 4(1), 639–650 (2016).

https://doi.org/10.1016/j.jece.2015.12.010

Nanda, A., and Saravanan, M., Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biol. Med., 5(4), 452–456 (2009).

https://doi.org/10.1016/j.nano.2009.01.012

Nava, O., Soto-Robles, C., Gomez-Gutierrez, C., Vilchis-Nester, A., Castro-Beltran, A., Olivas, A., and Luque, P., Fruit peel extract mediated green synthesis of zinc oxide nanoparticles, J. Mol. Struct., 1147, 1–6 (2017).

https://doi.org/10.1016/j.molstruc.2017.06.078

Noman, M., Shahid, M., Ahmed, T., Niazi, M., Hussain, S., Song, F., and Manzoor, I., Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents, Environ. Pollut., 257, 1-36 (2020).

https://doi.org/10.1016/j.envpol.2019.113514

Noor, S., Shah, Z., Javed, A., Ali, A., Hussain, S., Zafar, S., and Muhammad, S., A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 174, 1-36 (2020). https://doi.org/10.1016/j.mimet.2020.105966

Ohoro, C., Adeniji, A., Okoh, A., and O. O.-I., Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: A review, Int. J. Environ. Res. Public Health, 16(17), 1-31 (2019).

https://doi.org/10.3390/ijerph16173026

Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z. K., and Mukherjee, S., Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles, Appl. Microbiol. Biotechnol., 102(16), 6799–6814 (2018).

https://doi.org/10.1007/S00253-018-9146-7

Oya, N., Keskin, S., Celebioglu, A., Sarioglu, O. F., Uyar, T., and Tekinay, T., Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater, Colloids Surf., B., 161, 169–176 (2018).

https://doi.org/10.1016/j.colsurfb.2017.10.047

Pandey, N., Shukla, S. K., and Singh, N. B., Water purification by polymer nanocomposites: an overview, Nanocomposites, 3(2), 47–66 (2017).

https://doi.org/10.1080/20550324.2017.1329983

Pang, Y., Zeng, G.-M., Tang, L., Zhang, Y., Liu, Y.-Y., Lei, X.-X., Wu, M.-S., Li, Z., and Liu, C., Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes, Bioresour. Technol., 102(22), 10733–10736 (2011).

https://doi.org/10.1016/j.biortech.2011.08.078

Park, Y., Hong, Y., Weyers, A., Kim, Y., and Linhardt, R., Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles, IET Nanobiotechnol., 5(3), 69–78 (2011).

https://doi.org/10.1049/iet-nbt.2010.0033

Parsons, J., Peralta-Videa, J., and Gardea-Torresdey, J., Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants, Developments in Environmental Science, 5, 463–485 (2007).

https://doi.org/10.1016/S1474-8177(07)05021-8

Patil, S., and Chandrasekaran, R., Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges, J. Genet. Eng. Biotechnol., 18(1), 67 (2020).

https://doi.org/10.1186/s43141-020-00081-3

Pete, A. J., Bharti, B., and Benton, M. G., Nano-enhanced Bioremediation for Oil Spills: A Review, ACS ES&T Eng., 1(6), 928–946 (2021). https://doi.org/10.1021/ACSESTENGG.0C00217

Poguberovic, S., Krcmar, D., Dalmacija, B., Maletic, S., Tomasevic-Pilipovic, D., Kerkez, D., and Roncevic, S., Removal of Ni (II) and Cu (II) from aqueous solutions using ’green’zero-valent iron nanoparticles produced by oak and mulberry leaf extracts, Water Sci. Technol., 74(9), 2115–2123 (2016).

https://doi.org/10.2166/wst.2016.387

Prakash, A., Sharma, S., Ahmad, N., Ghosh, A., and Sinha, P., Synthesis of AgNps By Bacillus cereus bacteria and their antimicrobial potential, Journal of Biomaterials and Nanobiotechnology, 2(02), 156-162 (2011).

Prasad, K., Jha, A., and Kulkarni, A., Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters, 2(5), 248–250 (2007). https://doi.org/10.1007/s11671-007-9060-x

Qasem, N. A. A., Mohammed, R. H., and Lawal, D. U., Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4(1), 1-15 (2021).

https://doi.org/10.1038/s41545-021-00127-0

Rahman, Z., and Singh, V. P., Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges, Environ. Sci. Pollut. Res., 27(22), 27563–27581 (2020).

https://doi.org/10.1007/S11356-020-08903-0

Raǐkher, Y. L., Stepanov, V. I., Stolyar, S. V., Ladygina, V. P., Balaev, D. A., Ishchenko, L. A., and Balasoiu, M., Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca, Phys. Solid State, 52(2), 298–305 (2010).

https://doi.org/10.1134/S1063783410020125

Raj, R., Dalei, K., Chakraborty, J., and Das, S., Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution, J. Colloid Interface Sci., 462, 166–175 (2016).

https://doi.org/10.1016/j.jcis.2015.10.004

Rajeshkumar, S., & Bharath, L., Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity, Chem. Biol. Interact., 273, 219–227 (2017).

https://doi.org/10.1016/j.cbi.2017.06.019

Rao, A., Bankar, A., Kumar, A., Gosavi, S., and Zinjarde, S., Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles, J. Contam. Hydrol., 146, 63–73 (2013).

https://doi.org/10.1016/j.jconhyd.2012.12.008

Rao, C. N. R.,and Biswas, K., Characterization of nanomaterials by physical methods. Annual Review of Analytical Chemistry, 2, 435–462 (2009).

https://doi.org/10.1146/ANNUREV-ANCHEM-060908-155236

Rao, K. S., Mohapatra, M., Anand, S., and Venkateswarlu, P., Review on cadmium removal from aqueous solutions, Sci. Technol., 2(7), 81–103 (2010).

https://doi.org/10.4314/ijest.v2i7.63747

Renu, M., Singh, K., Upadhyaya, S., and Dohare, R., Removal of heavy metals from wastewater using modified agricultural adsorbents, Mater. Today Proc., 4(9), 10534–10538 (2017).

https://doi.org/10.1016/j.matpr.2017.06.415

Riddin, T., Gericke, C., and Whiteley, C., Biological synthesis of platinum nanoparticles: effect of initial metal concentration, Enzyme Microb. Technol., 46(6), 501–505 (2010).

https://doi.org/10.1016/j.enzmictec.2010.02.006

Rodovalho, F., Capistrano, G., Gomes, J., Sodre, F., Chaker, J., Campos, A., and Sousa, M., Elaboration of magneto-thermally recyclable nanosorbents for remote removal of toluene in contaminated water using magnetic hyperthermia, Chem. Eng. J., 302, 725–732 (2016). https://doi.org/10.1016/j.cej.2016.05.110

Roy, A., Elzaki, A., Tirth, V., Kajoak, S., Osman, H., Algahtani, A., and Bilal, M., Biological synthesis of nanocatalysts and their applications. Catalysts, 11(12), 1-22 (2021).

https://doi.org/10.3390/catal11121494

Saif, S., Tahir, A., and Chen, Y., Green synthesis of iron nanoparticles and their environmental applications and implications, Nanomater., 6(11), 1-26 (2016).

https://doi.org/10.3390/nano6110209

Saleem, S., Rizvi, A., and Khan, M. S., Microbiome-mediated nano-bioremediation of heavy metals: a prospective approach of soil metal detoxification, Int. J. Environ. Sci. Technol., 1–24 (2022).

https://doi.org/10.1007/S13762-022-04684-W

Saleh, T., Parthasarathy, P., and Irfan, M., Advanced functional polymer nanocomposites and their use in water ultra-purification, Trends Environ. Anal. Chem., 24, 1-11 (2019).

https://doi.org/10.1016/j.teac.2019.e00067

Sarioglu, O., Keskin, N. S., Celebioglu, A., Tekinay, T., and Uyar, T., Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water, Colloids Surf., B., 152, 245–251 (2017).

https://doi.org/10.1016/j.colsurfb.2017.01.034

Sathiyanarayanan, G., Dineshkumar, K., and Yang, Y. H., Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles, Crit. Rev. Microbiol., 43(6), 731–752 (2017).

https://doi.org/10.1080/1040841X.2017.1306689

Sathiyanarayanan, G., Kiran, G., and Selvin, J., Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17, Colloids Surf., B., 102, 13–20 (2013).

https://doi.org/10.1016/j.colsurfb.2012.07.032

Savage, N., and Diallo, M. S., Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res., 7(4–5), 331–342 (2005).

https://doi.org/10.1007/S11051-005-7523-5

Say, R., Yilmaz, N., and Denizli, A., Removal of heavy metal ions using the fungus penicillium canescens, Adsorpt. Sci. Technol., 21(7), 643–650 (2003).

https://doi.org/10.1260/026361703772776420

Seshadri, S., Saranya, K., and Kowshik, M., Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum, Biotechnol. Progr., 27(5), 1464–1469 (2011).

https://doi.org/10.1002/BTPR.651

Shahverdi, A., Minaeian, S., Shahverdi, H., Jamalifar, H., and Nohi, A., Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach, Process Biochem., 42(5), 919–923 (2007).

https://doi.org/10.1016/j.procbio.2007.02.005

Shankar, P., Shobana, S., Karuppusamy, I., Pugazhendhi, A., Ramkumar, V., Arvindnarayan, S., and Kumar, G., A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications, Enzyme Microb. Technol., 95, 28–44 (2016).

https://doi.org/10.1016/j.enzmictec.2016.10.015

Sharma, A., Sharma, S., Sharma, K., Chetri, S. P. K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B., and Agrawal, V., Algae as crucial organisms in advancing nanotechnology: a systematic review, J. Appl. Phycol., 28(3), 1759–1774 (2016).

https://doi.org/10.1007/S10811-015-0715-1

Sharma, U., and Sharma, J. G., Nanotechnology for the bioremediation of heavy metals and metalloids, Journal of Applied Biology and Biotechnology, 10(5), 34–43 (2022).

https://doi.org/10.7324/JABB.2022.100504

Shen, L., Wang, J., Li, Z., Fan, L., Chen, R., Wu, X., Li, J., and Zeng, W., A high-efficiency Fe2O3@ Microalgae composite for heavy metal removal from aqueous solution, J. Water Process Eng., 33, (2020).

https://doi.org/10.1016/j.jwpe.2019.101026

Shin, J., Lee, K., Yeo, T., and Choi, W., Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves, Sci. Rep., 6(1), 1-10 (2016).

https://doi.org/10.1038/srep21792

Shukla, P., Microbial Nanotechnology for Bioremediation of Industrial Wastewater, Frontiers in Microbiology, 11, 1-8 (2020). https://doi.org/10.3389/FMICB.2020.590631/FULL

Simeonov, L., Kochubovski, M., and Simeonova, B., Environmental heavy metal pollution and effects on child mental development: Risk assessment and prevention strategies, Springer (2010).

Singh, J., Vishwakarma, K., Ramawat, N., Rai, P., Singh, V. K., Mishra, R. K., Kumar, V., Tripathi, D. K., and Sharma, S., Nanomaterials and microbes’ interactions: a contemporary overview, 3 Biotech., 9(3), 1–14 (2019).

https://doi.org/10.1007/S13205-019-1576-0

Składanowski, M., Wypij, M., Laskowski, D., Golińska, P., Dahm, H., and Rai, M., Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens, J. Cluster Sci., 28(1), 59–79 (2017).

https://doi.org/10.1007/S10876-016-1043-6

Soppe, A., Heijman, S., Gensburger, I., Shantz, A., Van Halem, D., Kroesbergen, J., and Smeets, P., Critical parameters in the production of ceramic pot filters for household water treatment in developing countries, J. Water Health, 13(2), 587–599 (2015).

https://doi.org/10.2166/wh.2014.090

Southam, G., and Beveridge, T., The in vitro formation of placer gold by bacteria, Geochim. Cosmochim. Acta, 58(20), 4527–4530 (1994). https://doi.org/10.1016/0016-7037(94)90355-7

Srivastava, S. K., and Constanti, M., Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1, J. Nanopart. Res. , 14(4), 1–10 (2012).

https://doi.org/10.1007/S11051-012-0831-7

Srivastava, S., Yamada, R., Ogino, C., and Kondo, A., Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol, Nanoscale Res. Lett., 8(1), 1–9 (2013).

https://doi.org/10.1186/1556-276X-8-70

Subbaiya, R., Saravanan, M., Priya, A. R., Shankar, K. R., Selvam, M., Ovais, M., Balajee, R., & Barabadi, H., Biomimetic synthesis of silver nanoparticles from Streptomyces atrovirens and their potential anticancer activity against human breast cancer cells, IET Nanobiotechnol., 11(8), 965–972 (2017).

https://doi.org/10.1049/IET-NBT.2016.0222

Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., and Naidu, R., Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles, J. Appl. Phycol., 27(5), 1861–1869 (2015).

https://doi.org/10.1007/S10811-014-0492-2

Sudhakar, M., Aggarwal, A., and Sah, M., Engineering biomaterials for the bioremediation: Advances in nanotechnological approaches for heavy metals removal from natural resources, In Emerging Technologies in Environmental Bioremediation,2020, 323–339 (2020).

https://doi.org/10.1016/B978-0-12-819860-5.00014-6

Thilakan, D., Patankar, J., Khadtare, S., Wagh, N., Lakkakula, J., El-Hady, K., and Tarique, M., Plant-Derived Iron Nanoparticles for Removal of Heavy Metals, Int. J. Chem. Eng., 2022, 1-12 (2022).

https://doi.org/10.1155/2022/1517849

Torimiro, N., Daramola, O., Oshibanjo, O., Otuyelu, F., Akinsanola, B., Yusuf, O., and Omole, R., Ecorestoration of heavy metals and toxic chemicals in polluted environment using microbe-mediated nanomaterials, International Journal of Environmental Bioremediation & Biodegradation, 9(1), 8–21 (2021).

https://doi.org/10.12691/ijebb-9-1-2

Tosco, T., Papini, M., Viggi, C., and Sethi, R., Nanoscale zero-valent iron particles for groundwater remediation: a review, J. Cleaner Prod., 77, 10–21 (2014).

https://doi.org/10.1016/j.jclepro.2013.12.026

Tratnyek, P., and Johnson, R., Nanotechnologies for environmental cleanup, Nano Today, 1(2), 44–48 (2006).

https://doi.org/10.1016/S1748-0132(06)70048-2

Tripathi, S., Sanjeevi, R., Anuradha, J., Chauhan, D., and Rathoure, A., Nano-bioremediation: nanotechnology and bioremediation, In Research Anthology On Emerging Techniques in Environmental Remediation, 135–149 (2022).

https://doi.org/10.4018/978-1-6684-3714-8.ch007

Tsekhmistrenko, S., Bityutskyy, V., Tsekhmistrenko, O., Horalskyi, L., Tymoshok, N., and Spivak, M., Bacterial synthesis of nanoparticles: A green approach, Biosystems Diversity, 28(1), 9–17 (2020).

https://doi.org/10.15421/012002

Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., and Meena, F., Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine, Bioengineering, 7(4), 129 (2020).

https://doi.org/10.3390/bioengineering7040129

Verma, A., Dua, R., Singh, A., and Bishnoi, N., Biogenic sulfides for sequestration of Cr (VI), COD and sulfate from synthetic wastewater, Water Sci., 29(1), 19–25 (2015).

https://doi.org/10.1016/j.wsj.2015.03.001

Wang, L., Chen, X., Wang, H., Zhang, Y., Tang, Q., and Li, J., Chlorella vulgaris cultivation in sludge extracts from 2, 4, 6-TCP wastewater treatment for toxicity removal and utilization, J. Environ. Manage., 187, 146–153 (2017).

https://doi.org/10.1016/j.jenvman.2016.11.020

Wang, Y., Zhang, Y., Hou, C., and Liu, M., Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbent for dyes and metals removal, J. Taiwan Inst. Chem. Eng., 61, 292–298 (2016).

https://doi.org/10.1016/j.jtice.2016.01.008

Manar, E. A., Nermine, E. M., Reem, K. F. and Abdul-Raheim M. A. R., Wastewater treatment methodologies, review article, Int. J. Environ & Agri Sci., 3(1), 1-25 (2023).

Wen, L., Lin, Z., Gu, P., Zhou, J., Yao, B., Chen, G., and Fu, J., Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route, J. Nanopart. Res., 11(2), 279–288 (2008).

https://doi.org/10.1007/s11051-008-9378-z

Wright, M. H., Farooqui, S. M., White, A. R., and Greene, A. C., Production of manganese oxide nanoparticles by Shewanella species, Appl. Environ. Microbiol., 82(17), 5402–5409 (2016).

https://doi.org/10.1128/AEM.00663-16

Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A. P., and Rai, M., Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research, Biotechnol. Lett., 37(11), 2099–2120 (2015).

https://doi.org/10.1007/s10529-015-1901-6

Yadav, D., and Srivastava, S., Carbon nanotubes as adsorbent to remove heavy metal ion (Mn+ 7) in wastewater treatment, Mater. Today Proc., 4(2), 4089–4094 (2017).

https://doi.org/10.1016/j.matpr.2017.02.312

Yadav, V., Gadi, R., and Kalra, S., Clay based nanocomposites for removal of heavy metals from water: A review, J. Environ. Manage., 232, 803–817 (2019).

https://doi.org/10.1016/j.jenvman.2018.11.120

Yamakata, A., and Vequizo, J., Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: A review, J. Photochem. Photobiol., C, 40, 234–243 (2019).

https://doi.org/10.1016/j.jphotochemrev.2018.12.001

Yan, F., Wu, C., Cheng, Y., He, Y., Li, W., and Yu, H., Carbon nanotubes promote Cr (VI) reduction by alginate-immobilized Shewanella oneidensis MR-1, Biochem. Eng. J., 77, 183–189 (2013).

https://doi.org/10.1016/j.bej.2013.06.009

Yang, X., Zhao, Z., Yu, Y., Shimizu, K., Zhang, Z., Lei, Z., and Lee, D., Enhanced biosorption of Cr (VI) from synthetic wastewater using algal-bacterial aerobic granular sludge: Batch experiments, kinetics and mechanisms, Sep. Purif. Technol., 251, 1-7 (2020).

https://doi.org/10.1016/j.seppur.2020.117323

Yaqoob, A. A., Parveen, T., Umar, K., Nasir, M., and Ibrahim, M., Role of nanomaterials in the treatment of waste water: A review, Water, 12(2), 1-30 (2020).

https://doi.org/10.3390/w12020495

Yu, L., Ruan, S., Xu, X., Zou, R., and Hu, J., One-dimensional nanomaterial-assembled macroscopic membranes for water treatment, Nano Today, 17, 79–95 (2017).

https://doi.org/10.1016/j.seppur.2020.117323

Zhang, G., Liu, Z., Xiao, Z., Huang, J., Li, Q., Wang, Y., and Sun, D., Ni2P-graphite nanoplatelets supported Au-Pd core-shell nanoparticles with superior electrochemical properties, J. Phys. Chem. C., 119(19), 10469–10477 (2015).

https://doi.org/10.1021/ACS.JPCC.5B02107

Zhang, X., Yan, S., Tyagi, R., and Surampalli, R., Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates, Chemosphere, 82(4), 489–494 (2011).

https://doi.org/10.1016/j.chemosphere.2010.10.023

Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., and Zhang, Q., Polymer-supported nanocomposites for environmental application: A review, Chem. Eng. J., 170(2–3), 381–394 (2011).

https://doi.org/10.1016/j.cej.2011.02.071

Zhou, D., Kim, D., and Ko, S., Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1, J. Ind. Eng. Chem., 24, 132–139 (2015).

https://doi.org/10.1016/j.jiec.2014.09.020

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS