Sensitivity Enhancement of Surface Plasmon Resonance-based Biosensor using Aluminium-Cobalt-Tungsten Disulfide-Graphene Heterostructure
J. Environ. Nanotechnol., Volume 11, No 4 (2022) pp. 05-13
Abstract
An attempt has been made to enhance the sensitivity of a high-sensitive surface plasmon resonance (SPR) biosensor with an aluminium-cobalt bimetallic layer covered by a tungsten disulfide-graphene heterostructure. A thin layer of cobalt coated on an aluminium layer contributed substantially to increase the sensor performance. The use of Al and Co metals instead of noble metals like Ag and Au reduced the cost of the sensor. Further, tungsten disulfide (WS2) layers were employed to improve sensitivity and protect the bimetal Al-Co from becoming oxidized, whereas graphene served as the biomolecule trapping medium. The number of WS2 and graphene layers have optimized for better sensitivity. The proposed biosensor Al-Co-WS2-graphene structure displayed an excellent sensitivity of 300°/RIU, convenient for sensing biomolecules.
Full Text
Reference
Ambrosi, A., Sofer, Z. and Pumera, M., 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition, Chem. Commum. (Camb.), 51 (40), 8450-8453 (2015).
https://doi.org/10.1039/C5CC00803D
Anower, M. S., Rahman, M. S. and K. A. Rikta, Performance enhancement of graphene-coated surface plasmon resonance biosensor using tungsten disulfide, Opt. Eng., 57 (1), 1-8 (2018).
https://doi.org/10.1117/1.OE.57.1.017114
Atta, N. F., Galal A. and El-Ads, E. H., Graphene — A platform for sensor and biosensor applications, Biosensors Micro Nanoscale Appl. Intech, 37-84 (2015).
Ballif, C., Regula, M., Schmid, P. E., Remskar, M., Sanjines, R. and Levy, F., Preparation and characterization of highly oriented, photoconducting WS2 thin films, Appl. Phys. A: Mater. Sci. process., 62 (6), 543-546 (1996).
https://doi.org/10.1007/BF01571690
Bunch, J. S., Verbridge, S. S., Alden, J. S., van der Zande, A. M., Parpia, J. M., Craighead, H. G. and McEuen, P. L., Impermeable atomic membranes from graphene sheets, Nano Lett., 8 (8), 2458–2462 (2008).
https://doi.org/10.1021/nl801457b
Dash, J. and Jha, R., Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance, IEEE Photon. Technol. Lett., 26 (11), 1092-1095 (2014).
https://doi.org/10.1109/LPT.2014.2315233
Fortin, E. and Sears, W. M., Photovoltaic effect and optical absorption in MoS2, J. Phys. Chem. Solids, 43 (9), 881-884 (1982).
https://doi.org/10.1016/0022-3697(82)90037-3
Fouad, S., Sabri, N., Jamal, Z.A.Z. and Poopalan, P., Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate, J Nano- and Electr Phys, 8 (4(2)), 1-5 (2016).
http://dx.doi.org/10.21272/jnep.8(4(2)).04085
Gan, S., Zhao, Y., Dai, X. and Xiang, Y., Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets, Results Phys., 13, 1-5 (2019).
https://doi.org/10.1016/j.rinp.2019.102320
Gilliot, M., Naciri, A. En., Johann, L., Stoquert, J. P., Grob, J. J., Muller, D. and Stchakovsky, M., Optical properties of cobalt clusters implanted in thin silica layers, Phys Rev. B., 74, 1-8 (2006).
https://doi.org/10.1103/PhysRevB.74.045423
Han, L., Chen, Z., Huang, T., Ding H. and Wu, C., Sensitivity Enhancement of Ag-ITO-TMDCs-Graphene Nanostructure based on surface plasmon resonance biosensors, Plasmonics, 15 (5), 693–701 (2020).
https://doi.org/10.1007/s11468-019-01079-5
Jha, R. and Sharma A. K., Highly accurate surface plasmon resonance based chalcogenide glass sensor for infrared detection, Opt. Let., 34 (6), 749-751 (2009).
https://doi.org/10.1364/OL.34.000749
Jha, R. and Sharma, A. K., Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region, J. Opt. A: Pure Appl. Opt., 11 (4), 1-7 (2009).
https://doi.org/10.1088/1464-4258/11/4/045502
Klantsataya, E., Francois, A., Ebendorff-heidepriem, H., Hoffmann, P. and Monro, T. M., Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing, Sensors (Basel), 15 (10), 25090-25102 (2015).
https://doi.org/10.3390/s151025090
Kravets, V. G., Jalil, R., Kim, Y.-J., Ansell, D., Aznakayeva, D. E., Thackray, B., Britnel, L., Belle, B. D., Withers, F., Radko, I. P., Han, Z., Bozhevolnyi, S. I., Novoselov, K. S., Geim, A. K., Grigorenko, A. N., Graphene-protected copper and silver plasmonics, Sci. Rep., 4 (1), 1-8 (2014). https://doi.org/10.1038/srep05517
Kretschmann, E. and Raether, H., Radiative decay of nonradiative surface plasmons excited by light, Z. Naturforsch. A, 23 (12), 2135-2136 (1968). https://doi.org/10.1515/zna-1968-1247
Kumar, R., Pal, S., Prajapati, Y. K. and Saini, J. P., Sensitivity enhancement of MXene based SPR sensor using silicon: Theoretical analysis, Silicon, 13, 1887-1894 (2021).
https://doi.org/10.1007/s12633-020-00558-3
Lin, Z., Jiang, L., Wu, L., Guo, J., Dai, X., Xiang, Y. and Fan, D., Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films, IEEE Photonics J., 8 (6), 1-8 (2016).
http://dx.doi.org/10.1109/JPHOT.2016.2631407
Luo, Y., Chen, C., Xia, K., Peng, S., Guan, H., Tang, J., Lu, H., Yu, J., Zhang, J., Xiao, Y. and Chen, Z., Tungsten disulfide (WS2) based all-fiber-optic humidity sensor, Opt. Express., 24 (8), 8956-8966 (2016).
https://doi.org/10.1364/OE.24.008956
Maharana, P. K., Bharadwaj, S. and Jha, R., Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism, J. Appl. Phys., 114, 1-4 (2013).
https://doi.org/10.1063/1.4812732
Maharana, P. K., Padhy, P. and Jha, R., On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene, IEEE Photon Technol. Lett., 25 (22), 2156–2159 (2013).
https://doi.org/10.1109/LPT.2013.2281453
Maharana, P. K., Srivastava, T. and Jha, R., On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR Biosensor for Visible and Near Infrared, Plasmonics., 9 (5), 1113-1120 (2014).
http://dx.doi.org/10.1007/s11468-014-9721-4
Maheswari, P., Ravi, V., Rajesh, K. B. and Jha, R., High Performance bimetallic (Cu-Co) surface plasmon resonance sensor using hybrid configuration of 2D materials, J. Environ. Nanotechnol., 11(3), 1-10 (2022).
https://doi.org/10.13074/jent.2022.09.223455
Mauriz, E., Calle, A. and Manclus, J. J., Multi-analyte SPR immunoassays for environmental biosensing of pesticides, Anal. Bioanal. Chem., 387 (4), 1449–1458 (2007).
https://doi.org/10.1007/s00216-006-0800-z
Maurya, J. B., Prajapati, Y. K., Singh, V., Saini, J. P. and Tripathi, R., Performance of graphene-MoS2 based surface plasmon resonance sensor using silicon layer, Opt. Quant. Electron., 47, 3599-3611 (2015).
https://doi.org/10.1007/s11082-015-0233-z
Mayorga-Martinez, C. C., Ambrosi, A., Eng, A. Y. S., Sofer, Z. and Pumera, M., Metallic 1T-WS2 for selective impedimetric vapor sensing, Adv. Funct. Mater, 25 (35), 5611-5616 (2015).
https://doi.org/10.1002/adfm.201502223
Mishra, A. K., Mishra, S. K. and Verma, R. K., An SPR-based sensor with an extremely large dynamic range of refractive index measurements in the visible region, J. Phys. D: Appl. Phys., 48, 1-5 (2015).
https://doi.org/10.1088/0022-3727/48/43/435502
Nisha, A., Maheswari, P., Anbarasan, P. M., Rajesh, K. B. and Jaroszewicz, Z., Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni), Opt. Quant. Electron., 51 (19), 1-12 (2019).
https://doi.org/10.1007/S11082-018-1726-3
O’Brien M., Lee, K., Morrish, R., Berner, N. C., McEvoy, N., Wolden, C. A. and Duesberg, G. S., Plasma assisted synthesis of WS2 for gas sensing application, Chem. Phys. Lett., 615, 6-10 (2014).
http://dx.doi.org/10.1016%2Fj.cplett.2014.09.051
Ooi, K. J. A., Bai, P., Gu, M. X. and Ang, L. K., Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors, Nanotech., 23 (27), 1-4 (2012).
https://doi.org/10.1088/0957-4484/23/27/275201
Ouyang, Q., Zeng, S., Jiang, L., Hong, L., Xu, G., Dinh, X. Q., Qian, J., He, S., Qu, J., Coquet, P. and Yong, K. T., Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor, Sci. Rep., 6, 1-13 (2016).
https://doi.org/10.1038/srep28190
Ouyang, Q., Zeng, S., Jiang, L., Qu, J., Dinh, X.-Q., Qian, J., He, S., Coquet, P. and Youg, K.-T., Two-dimensional transition metal dichalcogenide enhanced phase-sensitive plasmonic biosensors: Theoretical Insight, J. Phys. Chem. C, 121 (11), 6282-6289 (2017).
https://doi.org/10.1021/acs.jpcc.6b12858
Pumera, M., Graphene in biosensing, Mater. Today, 14 (7-8), 308-315 (2011).
https://doi.org/10.1016/S1369-7021(11)70160-2
Rahman, M. S., Anower, M. S., Rahman, M. K., Hasan, M. R., Hossain, M. B. and Haque, M. I., Modeling of a highly sensitive MoS2-Graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization, Optik, 140, 989–97 (2017).
https://doi.org/10.1016/j.ijleo.2017.05.001
Rahman, M. S., Noor, S. S., Anower, M. S., Abdulrazak, L. F., Rahman, Md.M. and Rikta, K. A., Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide, Photon Nanostruct Fundam Appl., 33, 29–35 (2019).
https://doi.org/10.1016/J.PHOTONICS.2018.11.005
Ramanaviciene, A., Vikanauskyte, A., Acaite, J. and Ramanavicius, A., Application perspectives of conducting polymers in electrochemical immunosensors (Review), Acta Medica Lituanica, 5, 49-59 (2000).
Rich, R. L., Hoth, L. R., Geoghegan, K. F., Brown, T. A., LeMotte, P. K., Simons, S. P., Hensley, P. and Myszka, D. G., Kinetic analysis of estrogen receptor/ligand interactions, Proc. Natl. Acad. Sci. U.S.A, 99 (13), 8562-8567 (2002).
https://doi.org/10.1073%2Fpnas.142288199
Sharma, A.K. and Gupta B.D., On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors, J. Appl. Phys., 101 (9), 1-6 (2007).
https://doi.org/10.1063/1.2721779
Shukla, S., Sharma, N. K. and Sajal, V., Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films, Brazilian J. Phys., 46 (3), 288-293 (2016).
https://doi.org/10.1007/s13538-016-0406-7
Shushama, K. N., Rana, Md. M., Inum, R. and Hossain, Md. B., Sensitivity enhancement of graphene coated surface plasmon resonance biosensor, Opt. Quant. Electron., 49, 1-13 (2017).
https://doi.org/10.1007/s11082-017-1216-z
Singh, S., Sharma, A. K., Lohia, P. and Dwivedi, D. K., Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/ MoS2 heterostructure, Optik, 244, 1-13 (2021).
http://dx.doi.org/10.1016/j.ijleo.2021.167618
Song, B., Li, D., Qi, W., Elstner, M., Fan, C. and Fang, H., Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification, Chem. Phys. Chem., 11 (3), 585–589 (2010).
https://doi.org/10.1002/cphc.200900743
Suresh, N. V., Rajesh, K. B. and Pillai, T. V. S., Sensitivity enhancement of surface plasmon resonance sensor using Al–Au–BaTiO3–Graphene layers, J Opt., 50 (3), 152–159 (2021).
https://doi.org/10.1364/JOSAB.36.001108
Verma, A., Prakash, A. and Tripathi, R., Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap, Opt. Commun., 357, 106-112 (2015).
https://doi.org/10.1016/j.optcom.2015.08.076
Verma, R., Gupta, B. D. and Jha, R., Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers, Sens. Actuators B Chem., 160 (1), 623-631 (2011).
http://dx.doi.org/10.1016/j.snb.2011.08.039
Wang, M., Huo, Y., Jiang, S., Zhang, C., Yang, C., Ning, T., Liu, X., Li, C., Zhang, W. and Man, B., Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film, RCS. Adv., 7 (75), 47177-47182 (2017).
https://doi.org/10.1039/C7RA08380G
Wu, L., Chu, H. S., Koh, W. S. and Li, E. P., Highly sensitive graphene biosensors based on SPR, Opt. Express, 18 (14), 14395-14400 (2010). https://doi.org/10.1364/OE.18.014395
Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y. and Fan, D., Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor, Sens. Actuators B Chem., 249, 542-548 (2017). http://dx.doi.org/10.1016/j.snb.2017.04.110
Wu, L., Jia, Y., Jiang, L., Guo, J., Dai, X., Xiang, Y. and Fan, D., Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminium hybrid structure, J. Lightwave. Technol., 35 (1), 82-87 (2017).
Yonzon, C. R., Haynes, C.L., Zhang, X., Walsh, J. T. and Van Duyne, R. P., A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference, Anal. Chem., 76 (1), 78-85 (2004). https://doi.org/10.1021/ac035134k
Yu, A.Y.-C., Donovan, T. M. and Spicer, W. E., Optical properties of cobalt, Phys Rev., 167, 670-673 (1968).
https://doi.org/10.1103/PhysRev.167.670
Zhou, J., Qi, Q., Wang, C., Qian, Y., Liu, G., Wang, Y. and Fu, L., Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices, Biosens. Bioelectron., 142, 1-46, (2019).