High Performance Bimetallic(Cu-Co) Surface Plasmon Resonance Sensor using Hybrid Configuration of 2D Materials
J. Environ. Nanotechnol., Volume 11, No 3 (2022) pp. 01-10
Abstract
The performance of prism-based surface plasmon resonance sensor utilizing kretschmann configuration composed of thin metallic (Cu–Co) film coated with 2D material such as BP/Graphene layer is investigated theoretically based on angular interrogation method. It is observed that optimizing the thickness of bimetallic (Cu–Co) and BP/Graphene layers, the sensitivity of the sensor improved greatly and still can maintain its minimum reflectivity and line width of the SPR reflectivity curve. We also observed that addition of BP/ Graphene over the bimetallic layer, its further enhanced the sensitivity. Numerical results shows that sensitivity as high as 504deg/RIU is achieved for the well optimized bimetallic configuration consist of 45nm of Cu and 10nm of Co thickness for the analyte refractive indices ranging from 1.330 - 1.335.
Full Text
Reference
Bahar, M. and Barvestani, J., Performance enhancement of SPR Biosensor based on Phosphorene and Transition Metal Dichalcogenides for Sensing DNA Hybridization, IEEE sens. J., 18(18), 7537-7543 (2018).
https://doi.org/10.1109/JSEN.2018.2861829
Benaziez, S., Dibi, Z., Benaziez, N., Reflectivity Optimization of the SPR Graphene Sensor, Nanopages, 13(1), 5-17 (2018).
http://doi.org/10.1556/566.2018.0023
Cai, D., Lu, Y., Lin, K., Wang, P. and Ming, H., Improving the sensitivity of SPR sensors based on gratings by double -dips method (DDM), Opt. Express, 16(19), 14597–14602 (2008).
https://doi.org/10.1364/OE.16.014597
Chen, Y., Zheng, R. S., Zhang, D. G., Lu, Y. H., Wang, P., Ming, H., Luo, Z.F. and Kan, Q., Bimetallic chips for a surface plasmon resonance instrument, Appl. Opt., 50(3), 387-391 (2011).
https://doi.org/10.1364/AO.50.000387
Flanagan, M.T. and Pantell, R.H., Surfceplasmon resonance and immunosensors, Electron. Lett., 20(23) 968-970 (1984).
http://dx.doi.org/10.1049%2Fel%3A19840660
Ghorbanpour, M., Optimization of sensitivity and stability of gold/silver bi-layer thin films used in surface plasmon resonance chips, J. anostruct., 3(3), 309-313 (2013).
https://doi.org/10.7508/JNS.2013.03.006
Gilliot, M., En Naciri, A. and Johann,L., Optical properties of cobalt clusters implanted in thin silica layers,Phys. Rev. B, 74, 1-8 (2006).
https://doi.org/10.1103/PhysRevB.74.045423
Gwon, H.R. and Lee, S.H., Spectral and Angular responses of surface plasmon resonance based on the kretchmann prism configuration, Mater. Trans., 51(6), 1150-1155 (2010).
https://doi.org/10.2320/matertrans.M2010003
Hailin, X., Leiming, W., Xiaoyu, D., YanxiaGao and Yuanjiang Xiang, An ultra-high sensitivity surface plasmon resonance sensor based on graphenealuminum-graphene sandwich-like structure, J. Appl. Phys., 120(5), 1-6 (2016).
https://doi.org/10.1063/1.4959982
Hasan, K.R. and Tauhidul Haque, Performance Enhancement of Ag-Au Bimetallic Surface Plasmon Resonance Biosensor Using InP, 2018, Prog. Electromagn. Res. M, 76, 31-42 (2018).
https://doi.org/10.2528/PIERM18092503
Homola, J., Koudela, I. and Yee, S.S., Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sens. Actuators, B, 54(1-5), 16-24 (1999).
https://doi.org/10.1016/S0925-4005(98)00322-0
Huang, D. W., Ma, Y.F., Sung, M.J. and Huang, C.P., Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle, Opt. Eng., 49(5), 1-6 (2010).
https://doi.org/10.1117/1.3431662
Lee, M., Jeon, H. and Kim, S., A highly tunable and fully biocompatibles silk nanoplasmonic optical sensor, Nano. Lett., 15(5), 3358–3363 (2015).
https://doi.org/10.1021/acs.nanolett.5b00680
Maharana, P.K., Bharadwaj, S. and Jha, R., Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism, J. Applied Phys.,114(1), 1-5 (2013).
https://doi.org/10.1063/1.4812732
Maharana, P.K., RajanJha, Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity bosensor for high performance, Sens. Actuators B, 169, 161-166 (2012).
http://dx.doi.org/10.1016/j.snb.2012.04.051
Maheswari, P., Subanya, S., Ravi Veeran, Rajesh KaruppaiyaBalasundaram, RajanJha, ZbigniewJaroszewicz, Platinum Layers Sandwiched between Black hosphorous and Graphene for Enhanced SPR Sensor Performance, Plasmonics, 17 213-222 (2021).
https://doi.org/10.1007%2Fs11468-021-01507-5
Minghong, W., YanyanHuo, Shouzhen Jiang, Chao Zhang, Cheng Yang, TingyinNing ,Xiaoyun Liu, Chonghui Li, WenyuanZhanga and BaoyuanMana, Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film, RSC Adv., 7(75), 47177–47182 (2017).
https://doi.org/10.1039/C7RA08380G
Mitsushio, M., Miyashita, K., Higo, M., Sensor properties and surface characterization ofthe metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al, Sens. Actuators A, 125(2), 296-303 (2006).
http://dx.doi.org/10.1016/j.sna.2005.08.019
Nannan, M., Jingyi, T., Liming, X., Juanxia, W., Bowen Han, Jingjing Lin, Shibin Deng, Wei Ji, Hua Xu, Kaihui Liu, Lianming Tong and Jin Zhang, Optical anisotropy of BP in the visible regime, J. Am. Chem. Soc., 138, 300-305 (2016).
https://doi.org/10.1021/jacs.5b10685
Nylander, C., Liedberg, B. and Lind, T., Gas detection by means of surface plasmon resonance, Sens. Actuators, 3, 79-88 (1982).
https://doi.org/10.1016/0250-6874(82)80008-5
Ong, B.H., Yuan, X., Tan, Y., Irawan, R., Fang, X. L. Zhang, X. and Tjin, S., Two-layerd metallic film-indiced surface plasmonpolariton for fluorescence emission enhancement in on-chip waveguide, Lab Chip, 7, 506–512 (2007).
https://doi.org/10.1039/B701899C
Ordal, M.A., Bell, R.J., Alexander, R.W., Long, L.L., Querry, M.R., Optical properties of fourteen metals Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag,Ti, V and W. in the infrared and far infrared, Appl. Opt., 24(24) 4493-4499 (1985).
https://doi.org/10.1364/AO.22.001099
Rajeev, K., Sarika, P., Narendra, P., Vimal, M. and Yogendra, K.P, High-performance bimetallic surface plasmon .resonance biochemical sensor using a black phosphorus-MXene hybrid structure, Appl. Phys. A, 127(4), (2021).
https://doi.org/10.1007/s00339-021-04408-w
Rifat, A.A., Mahdiraji, G.A., Ahmed, R., Chow, D.M., Sua, Y.M., Shee, Y.G., Adikan, F.R.M., Copper-graphene-based photonic crystal fiber plasmonicbiosensor, IEEE Photon. J., 8(1), (2016).
https://doi.org/10.1109/JPHOT.2015.2510632
Rikta, K.A., Anower, M.S., Saifur Rahman, M., Mahabulur Rahman, M., SPR biosensor using SnSe-phosphoreneheterostructure, Sens. Bio-Sens. Res., 33, 1-9 (2021).
https://doi.org/10.1016/j.sbsr.2021.100442
Roli, V., Gupta, B.D., RajanJha., Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers, Sens. Actuators, B, 160(1), 623-631 (2011).
http://dx.doi.org/10.1016%2Fj.snb.2011.08.039
Sarika Pal, Alkaverma, Raikwar, S., Prajapati, Y.K. and Saini, J.P., Detection of DNAhybridization using graphene- coated black phosphorus surface plasmon resonance sensor, Appl. Phys. A, 124(5), 1-11 (2018).
https://doi.org/10.1007/s00339-018-1804-1
Sarika, P., Alka, V., Prajapati, Y.K. and Saini, J.P., Influence of black phosphorous on performance of surface plasmon resonance biosensor, Opt. Quant. Electron., 49, 1-13 (2017).
https://doi.org/10.1007/S11082-017-1237-7
Sharma, N. K., Shukla, S. and Sajal, V., Surface plasmon resonance-based fiber optic sensor using an additional layer of platinum: A theoretical study, Optik.,133, 43-50 (2017).
https://doi.org/10.1016/j.ijleo.2017.01.004
Shukla, S., Sharma, N.K., Sajal, V., Theoretical study of surface plasmon resonance-basedfiber optic sensor utilizing cobalt and nickel films, Braz. J. Phys., 46(3) 288-293 (2016).
https://doi.org/10.1007/s13538-016-0406-7
Singh, S., Mishra, S.K., Gupta, B.D., Sensitivity enhancement of a surface plasmonresonance based fiber optic refractive index sensor utilizing an additional layer of oxides, Sens. Actuators A, 193, 136-140 (2013).
https://doi.org/10.1016/j.sna.2013.01.012
Tran, N.H.T., Phan, B.T., Yoon, W.J., Khym, S. and Ju, H., Dielectric metal-based multilayers for surface plasmon resonance with enhanced quality factor of the plasmonic waves, J. Electron. Mater., 46(6), 3654–3659 (2017).
https://doi.org/10.1007/s11664-017-5375-2
Vibisha, G.A., Nayak, J.K., Maheswari, P., Priyadharsini, N., Nisha, A., Jaroszewicz, Z., Jha, R., Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu-Ni, Opt. Comm., 463, 1-10 (2020)
https://doi.org/10.1016/j.optcom.2020.125337
West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A., Searching for better plosmonic materials, Laser Photonics Rev., 4(6) 795-808 (2010).
https://doi.org/10.1002/lpor.200900055
Wu, L., Gu, J., Wang, Q., Lu, S., Dai, X., Xiang, Y. and Fan, D., Sensitivity enhancement by using few-layer black phosphorous–graphene/TMDC heterostructures in surface plasmon resonance biochemical sensor, Sens. Actuators B., 249(C), 542–548 (2017).
http://dx.doi.org/10.1016%2Fj.snb.2017.04.110
Wu, S.Y. and Ho, H.P., Sensitivity improvement of surface plasmon resonance optical sensor by using a gold-silver transducing layer, Proceedings 2002 IEEE Hong Kong Electron Devices Meeting, 63–68 (2002).
https://doi.org/10.1109/HKEDM.2002.1029158
Yuan, X., Ong, B., Tan, Y., Zhang, D., Irawan, R. and Tjin, S., Sensitivity-stability-optimized surface plasmon resonance sensing with double metal layers,” J. Opt. A: Pure Appl. Opt., 8(11), 959–963 (2006).
https://doi.org/10.1088/1464-4258/8/11/005
Zhao, X., Huang, T., Ping, P.S., Wu, X., Huang P., Pan J., Wu, Y. and Cheng, Z., Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/grapheneheterostructure, Sens., 18(7), 1-10 (2018).
https://doi.org/10.3390/s18072056
Zynio, S.A., Samoylov, A., Surovtseva, E., Mirsky, V. and Shirshov, Y., Bimetallic layer increase sensitivity of affinity sensor based on surface plasmon resonance, Sens. 2, 62–70 (2002).