Open Access

Synergetic Effect on Electrochemical Performance of Activated Carbon - Multiwalled Carbon Nanotubes Supercapacitor using various Electrodes in Aqueous Electrolyte

D. Thillaikkarasi, thillaikkarasidhanapal@gmail.com
PG & Research Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India
R. Ramesh Department of Physics, Energy and functional materials laboratory, Periyar University, Salem, TN, India


J. Environ. Nanotechnol., Volume 11, No 2 (2022) pp. 04-21

https://doi.org/10.13074/jent.2022.06.222453

PDF


Abstract

An Electrical double-layer capacitor (EDLC) has been fabricated with activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs), which in turn were synthesized from Pongamia pinnata fruit shell and its seed oil, respectively. The activated carbon was produced by the chemical activation process at varying carbonization temperatures from 600-900 °C for 5 hours in N2 atmosphere. The obtained activated carbon had a high surface area of 1170 m2 g-1 and a total pore volume of 0.5907 cm3 g-1. The surface area of MWCNTs was 216.1 2 m2 g-1 and the total pore volume was 1.5067 cm3 g-1. The as-prepared AC and MWCNTs were characterized by surface area analysis using Brunner-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopic analysis, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), Energy-dispersive X-ray spectroscopy (EDAX) and DFT (Density functional theory). The electrochemical performance of AC-MWCNTs (25:75) Stainless steel (SS) electrode and Graphite sheet electrode (GE) were studied by cyclic voltammetry, Galvanostatic charge-discharge and electrochemical impedance spectroscopy using 0.5 M Na2SO4 aqueous electrolyte. It has shown a specific capacitance of 174 Fg-1 and 95.26 Fg-1 respectively, using the three-electrode system at a current density of 1 mA g-1. The AC-MWCNT (25:75) SS electrode has exhibited excellent specific capacitance (CSP) and its Specific energy density and Power density were greater than AC-MWCNT (25:75) GE. The electrochemical performance of AC-MWCNT (25:75) SS electrode was identified as a suitable, low-cost and promising energy storage device for future generations. The present investigation attempts to promote the supercapacitor device in the context of available and future technologies for alternative energy systems with outstanding performance.

Full Text

Reference


Simon, P., Gogotsi, Y. and Dunn, B., Where Do Batteries End and Supercapacitors Begin?, Sci., 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625

Li, C., Islam Md, M., Moore, J., Sleppy, J., Morrison, C., Konstantinov, K., Dou, SX., Renduchintala, C. and Thomas, J., Wearable energy-smart ribbons for synchronous energy harvest and storage, Nat. Commun., 7(1), 1-10 (2016).

https://doi.org/10.1038/ncomms13319

Qu, L., Qiao, W., Constant Power Control of DFIG Wind Turbines with Supercapacitor Energy Storage, IEEE Trans. Ind. Applicat., 47(1), 359–367 (2011).

https://doi.org/10.1109/TIA.2010.2090932

Aval, L.F., Ghoranneviss, M., Pour, G.B., High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes, Heliyon., 4(11), 1-17 (2018).

https://doi.org/10.1016/j.heliyon.2018.e00862

Shi, W., Zhu, J., Sim, D H., Tay, Y Y., Lu, Z., Zhang, X., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H H. and Yan, Q., Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Chem., 21(10), 3422-3427 (2011).

https://doi.org/10.1039/c0jm03175e

Miller, J.R. and Simon, P., Electrochemical Capacitors for Energy Management, Sci., 321(5889), 651–652 (2008).

https://doi.org/10.1126/science.1158736

Brownson, D.A.C., Kampouris, D.K. and Banks, C.E., An overview of graphene in energy production and storage applications, J. Power Sources., 196(11), 4873–4885 (2011).

https://doi.org/10.1016/j.jpowsour.2011.02.022

Augustyn, V., Simon, P. and Dunn, B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(5), 1597-1614 (2014).

https://doi.org/10.1039/c3ee44164d

Simon, P., Gogotsi, Y., Materials for electrochemical capacitors, Nat. Mater., 7(11), 845–854 (2008).

https://doi.org/10.1038/nmat2297

Liu, C., Li, F., Ma, L.P., Cheng, H.M., Advanced Materials for Energy Storage, Adv. Mater., 22(8), E28–E62 (2010).

https://doi.org/10.1002/adma.200903328

Ibukun, O. and Jeong, H.K., An Activated Carbon and Carbon Nanotube Composite for a High-Performance Capacitor, New Phys.: Sae Mulli, 68(2), 185–188 (2018).

https://doi.org/10.3938/NPSM.68.185

Angulakshmi, V.S., Sivakumar, N. and Karthikeyan, S., Response Surface Methodology for Optimizing Process Parameters for Synthesis of Carbon Nanotubes, J. Environ. Nanotechnol., 1(1), 40-45 (2012).

https://doi.org/10.13074/jent.2012.10.121019

Mageswari, S., Angulakshmi, V.S., and Sathiskumar, C., Synthesis of Multi-Walled Carbon Nanotubes and Its Application for Removal of Dyes, Int. J. Adv. Res. Basic Eng. Sci. Technol., 3(28), 38-46 (2017).

Karthikeyan, S., Kalaiselvan, S., Manorangitham, D. and Maragathamani, S., Morphology and Structural Studies of Multi-walled Carbon Nanotubes by Spray Pyrolysis using Madhuca Longifolia Oil, J. Environ. Nanotechnol., 2(4), 15–20 (2013).

https://doi.org/10.13074/jent.2013.12.132040

Karthikeyan, S., Sivakumar, P. and Palanisamy, P.N., Novel Activated Carbons from Agricultural Wastes and their Characterization, E-J. Chem., 5(2), 409–426 (2008).

https://doi.org/10.1155/2008/902073

Sivakumar, B., Kannan, C. and Karthikeyan, S., Preparation and characterization of activated carbon prepared from Balsamodendron caudatum wood waste through various activation processes, Rasāyan J. Chem., 5(3), 321-327 (2012).

Palisoc, S., Dungo, J.M. and Natividad, M., Low-cost supercapacitor based on multi-walled carbon nanotubes and activated carbon derived from Moringa Oleifera fruit shells. Heliyon., 6(1), 1-9 (2020).

https://doi.org/10.1016/j.heliyon.2020.e03202

Muthu Balasubramanian, M., Subramani, M., Murugan, D. and Ponnusamy, S., Groundnut shell–derived porous carbon-based supercapacitor with high areal mass loading using carbon cloth as current collector. Ionics., 26(12), 6297–6308 (2020).

https://doi.org/10.1007/s11581-020-03754-8

Jain, A. and Tripathi, S.K., Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode, Mat. Sci. Eng.: B., 183, 54–60 (2014).

https://doi.org/10.1016/j.mseb.2013.12.004

Ahmed, S., Ahmed, A. and Rafat, M., Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes, J. Saudi Chem. Soc., 22(8), 993-1002 (2018).

https://doi.org/10.1016/j.jscs.2018.03.002

Zhou, Y., Jin, P., Zhou, Y. and Zhu, Y., High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites, Sci. Rep., 8(1), 1-8 (2018).

https://doi.org/10.1038/s41598-018-27460-8

Mandal, M., Subudhi, S., Alam, I., Subramanyam, B., Patra, S., Raiguru, J., Das, S. and Mahanandia, P., Facile synthesis of new hybrid electrode material based on activated carbon/multi-walled carbon nanotubes@ZnFe2O4 for supercapacitor applications, Inorg. Chem. Commun., 123, 108332 (2021).

https://doi.org/10.1016/j.inoche.2020.108332

Niu, C., Sichel, E.K., Hoch, R. and Moy, D., Tennent, H., High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 70(11), 1480–1482(1997).

https://doi.org/10.1063/1.118568

Yoon, B.J., Jeong, S.H., Lee, K.H., Seok Kim, H., Gyung Park, C. and Hun Han, J., Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes, Chem. Phys. Lett., 388(1–3), 170-174 (2004).

https://doi.org/10.1016/j.cplett.2004.02.071

Emmenegger, C.H., Mauron, P.H., Sudan, P., Wenger, P., Hermann, V., Gallay, R. and Züttel, A., Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources., 124(1), 321–329 (2003).

https://doi.org/10.1016/S0378-7753(03)00590-1

Signorelli, R., Ku, D.C., Kassakian, J.G. and Schindall, J.E., Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures, Proc. IEEE., 97(11), 1837–1847 (2009).

https://doi.org/10.1109/JPROC.2009.2030240

Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.F. and Cui. Y., Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA., 106(51), 21490–21494 (2009).

https://doi.org/10.1073/pnas.0908858106

Show, Y., Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode, J. Nanomater., 2012, 1-8 (2012).

https://doi.org/10.1155/2012/929343

Jeżowski, P., Nowicki, M., Grzeszkowiak, M., Czajka, R., Béguin, F., Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte, J. Power Sources., 279, 555-562 (2015).

https://doi.org/10.1016/j.jpowsour.2015.01.027

Barzegar, F., Momodu, D.Y., Fashedemi, O.O., Bello, A., Dangbegnon, J.K., Manyala, N., Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors, RSC Adv., 5(130), 107482–107487 (2015).

https://doi.org/10.1039/C5RA21962K

Maher, M., Hassan, S., Shoueir, K., Yousif, B. and Abo-Elsoud, M.E.A., Activated carbon electrode with promising specific capacitance based on potassium bromide redox additive electrolyte for supercapacitor application, J. Mater. Res. Technol., 11, 1232–1244 (2021).

https://doi.org/10.1016/j.jmrt.2021.01.080

Sivachidambaram, M., Vijaya, J.J., Kennedy, L.J., Jothiramalingam, R., Al-Lohedan, H.A., Munusamy, M.A., Elanthamilan, E. and Merlin, J.P., Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications, New J. Chem., 41(10), 3939-3949 (2017).

https://doi.org/10.1039/C6NJ03867K

Abdessalem Omri and Mourad Benzina, Characterization of Activated carbon prepared from a new raw lignocellulosic material: ZIZIPHUS SPINA-CHRISTI SEEDS, J. Soc. Chim. Tunis., 14, 175-183 (2012).

Gomes Ferreira de Paula, F., Campello-Gómez, I., Ortega, P.F.R., Rodríguez-Reinoso, F., Martínez-Escandell, M. and Silvestre-Albero, J., Structural Flexibility in Activated Carbon Materials Prepared under Harsh Activation Conditions, Mat., 12(12), 1-12 (2019).

https://doi.org/10.3390/ma12121988

Saravanan, A., Prasad, K., Gokulakrishnan, N., Kalaivani, R., Somanathan, T., Efficiency of Transition Metals in Combustion Catalyst for High Yield Helical Multi-Walled Carbon Nanotubes, adv. Sci. engng. med., 6(7), 809–813 (2014).

https://doi.org/10.1166/asem.2014.1569

Soleimani, H., Yahya, N., Baig, MK., Khodapanah, L., Sabet, M., Synthesis of Carbon Nanotubes for Oil-water Interfacial Tension Reduction, Oil Gas Res., 1(1), 1-5 (2015).

https://doi.org/10.4172/2472-0518.1000104

Angulakshmi, V.S., Sivakumar, N., Karthikeyan, S., Response Surface Methodology for Optimizing Process Parameters for Synthesis of Carbon Nanotubes, J. Environ. Nanotechnol., 1(1), 40–45 (2012).

https://doi.org/10.13074/jent.2012.10.121019

Ahmed, S., Ahmed, A., Rafat, M., Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes, J. Saudi Chem. Soc., 22(8), 993–1002 (2018).

https://doi.org/10.1016/j.jscs.2018.03.002

Tuinstra, F. and Koenig, J.L., Raman Spectrum of Graphite, J. Chem. Phys., 53(3), 1126–1130 (1970).

https://doi.org/10.1063/1.1674108

Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., Tascón, J.M.D., Raman microprobe studies on carbon materials, Carbon, 32(8), 1523–1532 (1994).

https://doi.org/10.1016/0008-6223(94)90148-1

Shimodaira, N. and Masui, A., Raman spectroscopic investigations of activated carbon materials, J. Appl. Phys., 92(2), 902–909 (2002). https://doi.org/10.1063/1.1487434

Munir, K.S., Qian, M., Li, Y., Oldfield, D.T., Kingshott, P., Zhu, D.M. and Wen, C., Quantitative Analyses of MWCNT-Ti Powder Mixtures using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution: Quantitative Analyses of MWCNTs-Ti Powder Mixtures, Adv. Eng. Mater., 17(11), 1660–1669 (2015).

https://doi.org/10.1002/adem.201500142

Kishore, K.V., Kaza Somasekhara Rao, G., and Vani, K.N.K., X-Ray Photoelectron Spectroscopy Studies on Activated Carbon Prepared From Rind of Citrus nobilis, Asian J. Chem., 22(6), 4377-4381 (2010).

Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A. and Órfão, J.J.M., Modification of the surface chemistry of activated carbons, Carbon., 37(9), 1379–1389 (1999).

https://doi.org/10.1016/S0008-6223(98)00333-9

Lennon, D., Lundie, D.T., Jackson, S.D., Kelly, G.J. and Parker, S.F., Characterization of Activated Carbon Using X-ray Photoelectron Spectroscopy and Inelastic Neutron Scattering Spectroscopy, Langmuir., 18(12), 4667-4673 (2002).

https://doi.org/10.1021/la011324j

Liu, Q., Ke, M., Liu, F, Yu, P., Hu, H. and Li, C., High-performance removal of methyl mercaptan by nitrogen-rich coconut shell activated carbon, RSC Adv.,7(37), 22892–22899 (2017).

https://doi.org/10.1039/C7RA03227G

Xu, L., Zhang, J., Ding, J., Liu, T., Shi, G., Li, X., Dang, W., Cheng, Y. and Guo, R., Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform, Miner., 10(1), 1-25 (2020).

https://doi.org/10.3390/min10010072

Conway, B.E., Electrochemical Supercapacitors || Electrochemical Capacitors Based on Pseudocapacitance, Springer, 221–257 (1999). https://doi.org/10.1007/978-1-4757-3058-6_10

Frackowiak, E., Metenier, K., Bertagna, V. and Beguin, F., Supercapacitor electrodes from multi-walled carbon nanotubes, Appl. Phys. Lett., 77(15), 2421–2423 (2000).

https://doi.org/10.1063/1.1290146

Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon., 39, 937–950 (2001). https://doi.org/10.1016/S0008-6223 (00)00183-4

Kastening, B. and Spinzig, S., Electrochemical polarization of activated carbon and graphite powder suspensions, J. Electroanal. Chem. Interfacial Electrochem., 214(1–2), 295–302 (1986).

https://doi.org/10.1016/0022-0728(86)80104-8

Mayer, S.T., Pekala, R.W., Kaschmitter, J. L., The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device, J. Electrochem. Soc., 140(2), 446–451 (1993).

https://doi.org/10.1149/1.2221066

Tanahashi, I., Yoshida, A. and Nishino, A., Electrochemical Characterization of Activated Carbon-Fiber Cloth Polarizable Electrodes for Electric Double-Layer Capacitors, J. Electrochem. Soc., 137(10), 3052-3057 (1990).

https://doi.org/10.1149/1.2086158

Show, Y., Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode, J. Nanomater., 2012, 1–8 (2012).

https://doi.org/10.1155/2012/929343

Mistar, E.M., Alfatah, T., Supardan, M.D., Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation, J. Mater. Res. Technol., 9(3), 6278–6286 (2020).

https://doi.org/10.1016/j.jmrt.2020.03.041

Yoshida, H., Fibres: Equilibria Chem, Eng. sci., 48(12), 2267-2272 (1993).

https://doi.org/10.1016/0009-2509(93)80242-I

Inagaki, M., Old but New Materials: Carbons In: New Carbons - Control of Structure and Functions; Inagaki, M., Ed., Elsevier Science: Oxford, 1–29 (2000).

Asadabad, M.A. and Eskandari, M.J., Electron Diffraction. In: Modern Electron Microscopy in Physical and Life Sciences, IntechOpen., (2016).

https://doi.org/10.5772/61781

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R. and Scalmani, G., Wallingford CT 201. Gaussian 09, Revision D. 01, Gaussian Inc., (2009).

Kruse, H., Goerigk, L. and Grimme, S., Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem, J. Org. Chem., 77(23), 10824–10834 (2012).

https://doi.org/10.1021/jo302156p

Lu, T. and Chen, F., Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33(5), 580–592 (2012).

https://doi.org/10.1002/jcc.22885

Skripnikov, L., Chemissian Version 4.43, Visualization Computer Program, (2016).

http://www.chemissian.com

Mousavi-Khoshdel, M., Targholi, E. and Momeni, M.J., First-Principles Calculation of Quantum Capacitance of Codoped Graphenes as Supercapacitor Electrodes, J. Phys. Chem. C., 119(47), 26290–26295 (2015).

https://doi.org/10.1021/acs.jpcc.5b07943

Yang, G., Zhang, H., Fan, X. and Zheng, W., Density Functional Theory Calculations for the Quantum Capacitance Performance of Graphene-Based Electrode Material, J. Phys. Chem. C., 119, 6464-6470 (2015).

http://dx.doi.org/10.1021/jp512176r

Mousavi-Khoshdel, S.M. and Targholi, E., Exploring the effect of functionalization of graphene on the quantum capacitance by first principle study, Carbon., 89, 148-160 (2015).

https://doi.org/10.1016/j.carbon.2015.03.013

Song, C., Wang, J., Meng, Z., Hu, F. and Jian, X., Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode, Chem. Phys. Chem., 19(13), 1579–1583 (2018).

https://doi.org/10.1002/cphc.201800070

Portet, C., Taberna, P.L., Simon, P. and Flahaut, E., Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power Sources., 139(1–2), 371–378(2005).

https://doi.org/10.1016/j.jpowsour.2004.07.015

Bichat, M.P., Raymundo-Piñero, E. and Béguin, F., High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte, Carbon , 48(15),4351–4361(2010).

https://doi.org/10.1016/j.carbon.2010.07.049

Kötz, R., Hahn, M. and Gallay, R., Temperature behavior and impedance fundamentals of supercapacitors, J. Power Sources., 154(2), 550–555 (2006).

https://doi.org/10.1016/j.jpowsour.2005.10.048

Mehare, M.D., Deshmukh, A.D. and Dhoble, S J., Bio-waste lemon peel derived carbon based electrode in perspect of supercapacitor, J. Mater. Sci.: Mater. Electron., 32, 14057–14071 (2021).

https://doi.org/10.1007/s10854-021-05985-5

Portet, C., Taberna, P.L., Simon, P., Flahaut, E. and Laberty-Robert, C., High power density electrodes for Carbon supercapacitor applications, Electrochim. Acta., 50(20), 4174–4181 (2005).

https://doi.org/10.1016/j.electacta.2005.01.038

Ahmed, Sultan., Rafat, M., Ahmed and Ahsan., Nitrogen doped activated carbon derived from orange peel for supercapacitor application, Adv. Nat. Sci.: Nanosci. Nanotechnol., 9(3), 035008 (2018).

https://doi.org/10.1088/2043-6254/aad5d4

Xu, J., Gao,Q., Zhang, Y., Tan, Y. and Tian, W., Zhu, L., Jiang, L., Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials, Sci. Rep., 4, 1-6 (2015).

https://doi.org/10.1038/srep05545

hmed, S., Hussain, S., Ahmed, A. and Rafat, M., High performance supercapacitor from activated carbon derived from waste orange skin, AIP Conf. Proc., 1953(1), 1-5 (2018).

https://doi.org/10.1063/1.5032522

Qu, X., Liu, Y., Zhang, C., Zhu, A., Wang, T., Tian, Y., Yu, J., Xing, B., Huang, G. and Cao, Y., Effect of diferent pretreatment methods on sesame husk-based activated carbon for supercapacitors with aqueous and organic electrolytes, J. Mater. Sci., 30, 7873–7882 (2019).

http://dx.doi.org/10.1007/s10854-019-01107-4

Gao, Yang, Tang, Yakun, Liu, Wei, Liu, Lang, Zeng, Xingya, Porous bamboo-like CNTs prepared by a simple and low cost steam activation for supercapacitors, Int. J. Energy Res., 44(13), 10946-10952 (2020).

https://doi.org/10.1002/er.5672

Contact Us

Powered by

Powered by OJS