Open Access

Modifying Translucent Carbon Electrode for Recurrent Determination of 1, 2-Dihydroxy Benzene

S. Deepa, deepasasi1984@gmail.com
Department of Physics, Government College of Engineering, Salem, TN, India
D. Kathirvel Department of Physics, Government Arts College, Coimbatore, TN, India


J. Environ. Nanotechnol., Volume 11, No 1 (2022) pp. 06-12

https://doi.org/10.13074/jent.2022.03.221449

PDF


Abstract

A voltammetric 1, 2-dihydroxy benzene assay utilizing a glassy/translucent carbon electrode (GCE) customized with graphene oxide and polycyanurotramine (GO/PM) composition is described. Field fluorescence, SEM, FTIR elemental composition and Raman spectroscope were used to analyze the enhanced GCE. When comparing conductors adjusted with GO or PM alone, electrochemistry demonstrates a well-defined sensitivity to 1, 2-dihydroxy benzene, with a much higher oxidation peak. The composite's simultaneous synergistic action of GO and PM results in a decreased oxidation potential. In the detection limit of 0.03 to 138 M 1, 2-dihydroxy benzene, differentiating pulse voltammetry (DPV) displays a constant value. The sensibility is 0.537 A M cm2, and the detection limit is 8 nM. Though in the context of theoretical contaminants, notably dopamine, hydroquinone and resorcinol, the detector is discriminating for 1, 2-dihydroxybenzene. The modified GCE for detecting 1, 2-dihydroxy benzene in samples collected is extremely repeatable, durable and accurate and it has greater applicability.

Full Text

Reference


Branzoi, F., Branzoi, V., The Electrochemical Behaviour of PEDOT Film Electrosynthesized in Presence of Some Dopants, Open J. Org. Polym. Mater., 5(4), 89–102 (2015).

https://doi.org/10.4236/ojopm.2015.54010

Butwong, N., Kunawong, T., Luong, J. H. T., Simultaneous Analysis of Hydroquinone, Arbutin, and Ascorbyl Glucoside Using a Nanocomposite of Ag@AgCl Nanoparticles, Ag2S Nanoparticles, Multiwall Carbon Nanotubes, and Chitosan, Nanomaterials., 10(8), 1583-1589 (2020).

https://doi.org/10.3390/nano10081583

Chen, T.-W., Simultaneous Determination of Dihydroxybenzene Isomers using Glass Carbon Electrode Modified with 3D CNT-graphene Decorated with Au Nanoparticles, Int. J. Electrochem. Sci., 7037–7046 (2019).

https://doi.org/10.20964/2019.08.58

Dang, V. T., Nguyen, D. D., Cao, T. T., Le, P. H., Tran, D. L., Phan, N. M., Nguyen, V. C., Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films, Adv. Nat. Sci. Nanosci. Nanotechnol., 7(3), 033002-033012 (2016).

https://doi.org/10.1088/2043-6262/7/3/033002

Davis, J., Vaughan, D. H., Cardosi, M. F., Modification of catechol polymer redox properties during electropolymerization in the presence of aliphatic amines, Electrochim. Acta, 43(3–4), 291–300 (1998).

https://doi.org/10.1016/S0013-4686(97)00086-8

Lu, J.-Y., Yu, Y.-S., Chen, T.-B., Chang, C.-F., Tamulevičius, S., Erts, D., Wu, K. C.-W., Gu, Y., Fabrication of an Extremely Cheap Poly(3,4-ethylenedioxythiophene) Modified Pencil Lead Electrode for Effective Hydroquinone Sensing, Polymers (Basel)., 13(3), 343 (2021).

https://doi.org/10.3390/polym13030343

Mani, V., Chen, S. M., Lou, B.-S., Three Dimensional Graphene Oxide-Carbon Nanotubes and Graphene-Carbon Nanotubes Hybrids, Int. J. Electrochem. Sci., 8, 11641–11660 (2013).

Monisha, S., Mary Saral, A., Senthil Kumar, A., Electrochemical investigation of a tulsi-holy basil-crude plant extract on graphitized mesoporous carbon nanomaterial surface: Selective electrocatalytic activity of surface-confined rosmarinic acid for phenyl hydrazine-pollutant oxidation reaction, J. Electroanal. Chem., 901, 115757 (2021).

https://doi.org/10.1016/J.JELECHEM.2021.115757

Nellaiappan, S., Kumar, A. S., Selective amperometric and flow injection analysis of 1,2-dihydroxy benzene isomer in presence of 1,3- and 1,4-dihydroxy benzene isomers using palladium nanoparticles-chitosan modified ITO electrode, Sensors Actuators B Chem., 254, 820–826 (2018).

https://doi.org/10.1016/j.snb.2017.07.176

Pifer, J. W., Hearne, F. T., Swanson, F. A., O’Donoghue, J. L., Mortality study of employees engaged in the manufacture and use of hydroquinone, Int. Arch. Occup. Environ. Health 67(4), 267–280 (1995).

https://doi.org/10.1007/BF00409409

Rodrı́guez, M. C., Rivas, G. A., Glassy carbon paste electrodes modified with polyphenol oxidase, Anal. Chim. Acta 459(1), 43–51 (2002).

https://doi.org/10.1016/S0003-2670(02)00088-0

Silah, H., Erkmen, C., Demir, E., Uslu, B., Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis, TrAC Trends Anal. Chem., 141, 116289 (2021).

https://doi.org/10.1016/J.TRAC.2021.116289

TANAKA, K., Resorcinol, J. Synth. Org. Chem. Japan 43(3), 262–262 (1985).

https://doi.org/10.5059/yukigoseikyokaishi.43.262

Torrinha, Á., Oliveira, T. M. B. F., Ribeiro, F. W. P., Correia, A. N., Lima-Neto, P., Morais, S., Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review, Nanomater., 10(7), 1268 (2020).

https://doi.org/10.3390/NANO10071268

Tse, T. W., Hydroquinone for skin lightening: Safety profile, duration of use and when should we stop?, J. Dermatolog. Treat., 21(5), 272–275 (2010). https://doi.org/10.3109/09546630903341945

Yang, J., Deng, S., Lei, J., Ju, H., Gunasekaran, S., Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing, Biosens. Bioelectron., 29(1), 159–166 (2011).

https://doi.org/10.1016/J.BIOS.2011.08.011

Ye, Z., Wang, Q., Qiao, J., Xu, Y., Li, G., In situ synthesis of sandwich MOFs on reduced graphene oxide for electrochemical sensing of dihydroxybenzene isomers, Analyst, 144(6), 2120–2129 (2019).

https://doi.org/10.1039/C8AN02307G

Yin, D., Liu, J., Bo, X., Guo, L., Cobalt-iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of a trace of hydroquinone, catechol and resorcinol, Anal. Chim. Acta, 1093, 35–42 (2020).

https://doi.org/10.1016/J.ACA.2019.09.057

Yuan, D., Chen, S., Hu, F., Wang, C., Yuan, R., Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt-Au-organosilica@chitosan composites modified electrode, Sensors Actuators B Chem., 168, 193–199 (2012).

https://doi.org/10.1016/j.snb.2012.03.085

Zheng, X., Hu, Y., Li, H., Han, B., Lin, R., Huang, B., N-doped carbon nanotube frameworks modified electrode for the selective sensing of hydroquinone and catechol, J. Electroanal. Chem., 861, 113968 (2020).

https://doi.org/10.1016/J.JELECHEM.2020.113968

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS