Open Access

Synthesis and Characterization of Ag-decorated TiO2 Nanoparticles for Photocatalytic Application

K. Balachandran, balanano06@gmail.com
Research Centre, Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India
G. Vijayakumar, Research Centre, Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India S. Mageswari, Research Centre, Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India A. Preethi, Research Centre, Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India M.S. Viswak Senan Research Centre, Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India


J. Environ. Nanotechnol., Volume 10, No 4 (2021) pp. 13-18

https://doi.org/10.13074/jent.2021.12.14446

PDF


Abstract

TiO2 nanoparticles and Ag-doped TiO2 nanocomposites (Ag-TiO2) were synthesized by the Sol-Gel  process using titanium tetra isopropoxide as TiO2 and AgNO3 as Ag precursors, respectively. The synthesized nanocomposites were characterized by XRD, SEM, TEM, FT-IR and UV-Visible analyses. The XRD results show that Ag-doping increases the grain size from 22 nm to 36 nm. From the UV-Visible spectra, the redshift in absorbance was observed, which indicates the increase in grain size and reduction in the bandgap. The TEM analysis shows that all the particles are exhibited in the nanometer range. The synthesized nanoparticles show good photocatalytic activity and they decompose the methyl orange dye within 5 hours.

Full Text

Reference


Abdul Gafoor, A. K., Musthafa, M. M., Pradyumnan, P. P., AC Conductivity and Diffuse Reflectance Studies of Ag-TiO2 Nanoparticles, J. Electron. Mater. 41(9), 2387–2392 (2012).

https://dx.doi.org/10.1007/s11664-012-2174-7

Almquist, C. B., Biswas, P., Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity, J. Catal. 212(2), 145–156 (2002).

https://dx.doi.org/10.1006/jcat.2002.3783

Burns, A., Hayes, G., Li, W., Hirvonen, J., Demaree, J. D., Shah, S. I., Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures, Mater. Sci. Eng. B 111(2–3), 150–155 (2004).

https://dx.doi.org/10.1016/j.mseb.2004.04.008

Fox, M. A., Dulay, M. T., Heterogeneous photocatalysis, Chem. Rev. 93(1), 341–357 (1993).

https://dx.doi.org/10.1021/cr00017a016

Fukuda, K., Nakai, I., Oishi, C., Nomura, M., Harada, M., Ebina, Y., Sasaki, T., Nanoarchitecture of Semiconductor Titania Nanosheets Revealed by Polarization-Dependent Total Reflection Fluorescence X-ray Absorption Fine Structure, J. Phys. Chem. B 108(35), 13088–13092 (2004).

https://dx.doi.org/10.1021/jp047766w

Guo, H., Lin, K., Zheng, Z., Xiao, F., Li, S., Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light, dye. Pigment. 92(3), 1278–1284 (2012).

https://dx.doi.org/10.1016/j.dyepig.2011.09.004

Jiang, B., Tian, C., Zhou, W., Wang, J., Xie, Y., Pan, Q., Ren, Z., Dong, Y., Fu, D., Han, J., Fu, H., In Situ Growth of TiO2 in Interlayers of Expanded Graphite for the Fabrication of TiO2-Graphene with Enhanced Photocatalytic Activity, Chem. - A Eur. J. 17(30), 8379–8387 (2011).

https://dx.doi.org/10.1002/chem.201100250

Li, G., Li, L., Boerio-Goates, J., Woodfield, B. F., High Purity Anatase TiO 2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc. 127(24), 8659–8666 (2005).

https://dx.doi.org/10.1021/ja050517g

Liu, S., Yu, J., Jaroniec, M., Tunable Photocatalytic Selectivity of Hollow TiO 2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets, J. Am. Chem. Soc. 132(34), 11914–11916 (2010).

https://dx.doi.org/10.1021/ja105283s

Rajamanickam, D., Dhatshanamurthi, P., Shanthi, M., Enhanced photocatalytic efficiency of NiS/TiO2 composite catalysts using sunset yellow, an azo dye under day light illumination, Mater. Res. Bull. 61, 439–447 (2015).

https://dx.doi.org/10.1016/j.materresbull.2014.09.095

Sahu, M., Wu, B., Zhu, L., Jacobson, C., Wang, W.-N., Jones, K., Goyal, Y., Tang, Y. J., Biswas, P., Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO2 nanoparticles, Nanotechnol., 22(41), 415704 (2011).

https://dx.doi.org/10.1088/0957-4484/22/41/415704

Tom, R. T., Nair, A. S., Singh, N., Aslam, M., Nagendra, C. L., Philip, R., Vijayamohanan, K., Pradeep, T., Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core−Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties, Langmuir, 19(8), 3439–3445 (2003).

https://dx.doi.org/10.1021/la0266435

Wang, Y., Du, G., Liu, H., Liu, D., Qin, S., Wang, N., Hu, C., Tao, X., Jiao, J., Wang, J., Wang, Z. L., Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications, Adv. Funct. Mater., 18(7), 1131–1137 (2008).

https://dx.doi.org/10.1002/adfm.200701120

Contact Us

Powered by

Powered by OJS