Open Access

Characterization Studies of a GC-based SAW Sensor System for Potential Detection and Identification of Toxic Environmental Gases/Vapors

A. Ashibaparveen, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India V. Senthilkumar, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India T. Venkatesan, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India P. Gowdhaman, Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India Haresh M. Pandya, haresh.pandya@rediffmail.com
Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India
A.T. Nimal, Solid State Physics Laboratory, Delhi, India Upendra Mittal, Solid State Physics Laboratory, Delhi, India Jitender Kumar Solid State Physics Laboratory, Delhi, India


J. Environ. Nanotechnol., Volume 10, No 4 (2021) pp. 01-07

https://doi.org/10.13074/jent.2021.12.21441

PDF


Abstract

The characterization of a custom-designed GC-based Surface Acoustic Wave (SAW) e-Nose sensor system is presented here to study the sensing ability of the sensor system to detect and identify low medium and high toxic vapors. A semi-automated multi-vapor generator generated vapors of chemical compounds which were then exposed to the sensing system to examine its performance under various concentrations. Time-domain vs. frequency response of GC-SAW sensor was noted for repeated cycles against different chemical compounds like xylene, 1, 2 dibromoethane, dimethyl sulfate, triethyl phosphate, nitrobenzene, phosphorous trichloride being tested. The generated data was examined using a Principal Component Analysis (PCA) technique to detect a unique response for every individual chemical compound. Experimental results were reported.

Full Text

Reference


Alizadeh, T. and Zeynali, S., Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification, Sens. Actuators B: Chem., 129(1), 412–423 (2008).

https://dx.doi.org/10.1016/j.snb.2007.08.044

Arshak, K., Moore, E., Lyons, G. M., Harris, J. and Clifford, S., A review of gas sensors employed in electronic nose applications, Sens. Rev., 24(2), 181 - 198 (2004).

https://dx.doi.org/10.1108/02602280410525977

Banu Priya, R., Venkatesan, T., Pandiyarajan, G. and Haresh, M. P., SAW Devices - A Comprehensive Review, J. Environ. Nanotechnol., 3(3), 106–115 (2014).

https://dx.doi.org/10.13074/jent.2014.09.143101

Benetti, M., Cannatà, D., Verona, E., Palla Papavlu, A., Dinca, V. C., Lippert, T., Dinescu, M. and Di Pietrantonio, F., Highly selective surface acoustic wave e-nose implemented by laser direct writing, Sens. Actuators B: Chem., 283, 154 - 162 (2019).

https://dx.doi.org/10.1016/j.snb.2018.12.005

Bhasker Raj, V., Nimal, A. T., Parmar, Y., Sharma, M. U. and Gupta, V., Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor, Sens. Actuators B: Chem., 166–167, 576–585 (2012).

https://dx.doi.org/10.1016/j.snb.2012.03.013

Bongiovanni Abel, S., Olejnik, R., Rivarola, C. R., Slobodian, P., Saha, P., Acevedo, D. F. and Barbero, C. A., Resistive sensors for organic vapors based on nanostructured and chemically modified polyanilines, IEEE Sens. J., 18(16), 6510–6516 (2018).

https://dx.doi.org/10.1109/JSEN.2018.2848843

Bui, T., Morana, B., Scholtes, T., Duc, T. C. and Sarro, P. M., A mixing surface acoustic wave device for liquid sensing applications : Design, simulation and analysis, J. Appl. Phys., 120(7), 074504 (2016).

https://dx.doi.org/10.1063/1.4961214

Chang, P., Shih, J. S., Preparation and application of cryptand-coated piezoelectric crystal gas-chromatographic detector, Anal. Chim. Acta., 360(1–3), 61–68 (1998).

https://dx.doi.org/10.1016/S0003-2670(97)00691-0

Chauhan, S., Chauhan, S., D’Cruz, R., Faruqi, S., Singh, K. K., Varma, S., Singh, M. and Karthik, V., Chemical warfare agents, Environ. Toxicol. Pharmacol., 26(2), 113–122 (2008).

https://dx.doi.org/10.1016/j.etap.2008.03.003

Cheeke, J. D. N. and Wang, Z., Acoustic wave gas sensors, Sens. Actuators B: Chem., 59(2–3), 146–153 (1999).

https://dx.doi.org/10.1016/S0925-4005(99)00212-9

Devkota, J., Ohodnicki, P. and Greve, D., SAW sensors for chemical vapors and gases, J. Sens., 17(4), 801-808 (2017).

https://dx.doi.org/10.3390/s17040801

EL Gowini, M. M., Moussa, W., A finite element model of a MEMS-based surface acoustic wave hydrogen sensor, J. Sens., 10(2), 1232–1250 (2010).

https://dx.doi.org/10.3390/s100201232

Fahim, F., Mainuddin, M., Mittal, U., Kumar, J., Nimal, A. T., Novel SAW CWA detector using temperature programmed desorption, IEEE Sens. J. 21(5), 5914–5922 (2021).

https://dx.doi.org/10.1109/JSEN.2020.3042766

Fahim, Mainuddin, Mittal, U., Kumar, J., Nimal, A. T. and Sharma, M. U., Single chip readout electronics for SAW based gas sensor systems, In: 2017 IEEE SENSORS, 01–03, (2017).

https://dx.doi.org/10.1109/ICSENS.2017.8233886

Gongora, A., Monroy, J., Gonzalez-Jimenez, J., An electronic architecture for multipurpose artificial noses, J. Sens., 01–09, (2018).

https://dx.doi.org/10.1155/2018/5427693

Gowdhaman, P., Venkatesan, T., Haresh M. P., Review of surface acoustic wave sensors for the detection and identification of toxic environmental gases/vapours, Arch. Acoust., 43(3), 357–367 (2018).

https://dx.doi.org/10.24425/123908

Haresh, M. P., Sharma, M. U., Nimal, A. T. and Rajesh, K. B., Impulse modelled response of a 300 MHz ST-Quartz SAW device for sensor specific applications, J. Environ. Nanotechnol., 2, 15–21 (2013).

https://dx.doi.org/10.13074/jent.2013.02.nciset33

Islam, T., Nimal, A. T., Mittal, U. and Sharma, M. U., A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175 – 625 ppm, Sens. Actuators B: Chem., 221, 357–364 (2015).

https://dx.doi.org/10.1016/j.snb.2015.06.101

Jha, S. and Yadava, R., Development of surface acoustic wave electronic nose, Def. Sci. J., 60(4), 364–376 (2010).

https://dx.doi.org/10.14429/dsj.60.493

Joo, B. S., Huh, J. S. and Lee, D. D., Fabrication of polymer SAW sensor array to classify chemical warfare agents, Sens. Actuators B: Chem., 121(1), 47–53 (2007).

https://dx.doi.org/10.1016/j.snb.2006.09.013

Liu, B., Chen, X., Cai, H., Mohammad Ali, M., Tian, X., Tao, L., Yang, Y. and Ren, T., Surface acoustic wave devices for sensor applications, J. Semicond., 37(2), 021001 (2016).

https://dx.doi.org/10.1088/1674-4926/37/2/021001

Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D. and Ning, H., A Survey on Gas Sensing Technology, Sensors 12(7), 9635–9665 (2012).

https://dx.doi.org/10.3390/s120709635

Manenti, R., Peterer, M. J., Nersisyan, A., Magnusson, E. B., Patterson, A. and Leek, P. J., Surface acoustic wave resonators in the quantum regime, Phys. Rev. B., 93(4), 041411 (2016).

https://dx.doi.org/10.1103/PhysRevB.93.041411

Mittal, U., Islam, T., Nimal, A. T. and Sharma, M. U., A novel sol–gel γ -Al2O3 thin-film-based rapid SAW humidity sensor, IEEE Trans. Electron. Devices, 62(12), 4242–4250 (2015).

https://dx.doi.org/10.1109/TED.2015.2492139

Morgan, D. P., History of SAW devices, Proc. IEEE Int. Freq. Control Symp., 439–460 (1998).

https://dx.doi.org/10.1109/FREQ.1998.717937

Mujahid, A., Dickert, F., Surface acoustic wave (SAW) for chemical sensing applications of recognition layers, J. Sens., 17(12), 2716 (2017).

https://dx.doi.org/10.3390/s17122716

Namdeo, A. K. and Nemade, H. B., Simulation on effects of electrical loading due to interdigital transducers in SAW resonator, Procedia Eng., 64, 322–330 (2013).

https://dx.doi.org/10.1016/j.proeng.2013.09.104

Nimal, A. T., Mittal, U., Singh, M., Khaneja, M., Kannan, G. K., Kapoor, J. C., Dubey, V., Gutch, P. K., Lal, G., Vyas, K. D. and Gupta, D. C., Development of handheld SAW vapor sensors for explosives and CW agents, Sens. Actuators B: Chem., 135(2), 399–410 (2009).

https://dx.doi.org/10.1016/j.snb.2008.08.040

Nimal, A. T., Singh, M., Mittal, U. and Yadava, R. D. S., A comparative analysis of one-port Colpitt and two-port Pierce SAW oscillators for DMMP vapor sensing, Sens. Actuators B: Chem., 114(1), 316–325 (2006).

https://dx.doi.org/10.1016/j.snb.2005.05.021

Gowdhaman, P., Venkatesan, T., Banupriya, R. B., Nimal, A. T. and Haresh M. Pandya, Comprehensive review of latest e-nose sensor technologies, J. Environ. Nanotechnol., 9(1), 31–41 (2020).

https://dx.doi.org/10.13074/jent.2020.03.201397

Pan, Y., Mu, N., Shao, S., Yang, L., Wang, W., Xie, X. and He, S., Selective SAW-based organophosphorus sensor employing a host-guest self-assembly monolayer of β-cyclodextrin derivative, J. Sens., 15(8), 17916–17925 (2015).

https://dx.doi.org/10.3390/s150817916

Priya, R. B., Venkatesan, T. and Pandya, H. M., A Comparison of Surface Acoustic Wave ( SAW ) delay line modelling techniques for sensor applications, J. Environ. Nanotechnol., 5(2), 42–47 (2016).

https://dx.doi.org/10.13074/jent.2016.06.162193

Raj, V. B., Singh, H., Nimal, A. T., Sharma, M. U. and Gupta, V., Oxide thin films (ZnO, TeO2, SnO2 and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sens. Actuators B: Chem., 178, 636–647 (2013a).

https://dx.doi.org/10.1016/j.snb.2012.12.074

Raj, V. B., Singh, H., Nimal, A. T., Tomar, M., Sharma, M. U. and Gupta, V., Effect of metal oxide sensing layers on the distinct detection of ammonia using surface acoustic wave (SAW) sensors, Sens. Actuators B: Chem., 187, 563–573 (2013b).

https://dx.doi.org/10.1016/j.snb.2013.04.063

Raj, V. B., Singh, H., Nimal, A. T., Tomar, M., Sharma, M. U. and Gupta, V., Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor, Sens. Actuators B: Chem., 207, 375–382 (2015).

https://dx.doi.org/10.1016/j.snb.2014.10.015

Sayago, I., Aleixandre, M. and Santos, J. P., Development of tin oxide-based nanosensors for electronic nose environmental applications, Biosensors, 9(1), 21 (2019).

https://dx.doi.org/10.3390/bios9010021

Singh, H., Raj, V. B., Kumar, J., Durani, F., Mishra, M., Nimal, A. T. and Sharma, M. U., SAW mono sensor for identification of harmful vapors using PCA and ANN, Process Saf. Environ. Prot., 102, 577–588 (2016).

https://dx.doi.org/10.1016/j.psep.2016.05.014

Singh, H., Raj, V. B., Kumar, J., Mittal, U., Mishra, M., Nimal, A. T., Sharma, M. U., Gupta, V., Metal oxide SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol, Sens. Actuators B: Chem., 200, 147–156 (2014).

https://dx.doi.org/10.1016/j.snb.2014.04.065

Thirumal, V., Gandhi, P., Pandya, H. M. nd, Raju, B., Comparative modelling studies of 400 MHz ST-X quartz SAW delay lines for potential gas sensing applications, Arch. Acoust., 43(2), 153–161 (2018).

https://dx.doi.org/10.24425/122363

Venkatesan, T. and Haresh, M. P., Surface Acoustic Wave devices and sensors - A short review on design and modelling by impulse response, J. Environ. Nanotechnol., 2(3), 81–89 (2013).

https://dx.doi.org/10.13074/jent.2013.09.132034

Wang, W., Liu, X., Mei, S., Jia, Y., Liu, M., Xue, X., Yang, D., Development of a Pd/Cu nanowires coated SAW hydrogen gas sensor with fast response and recovery, Sens. Actuators B: Chem., 287, 157–164 (2019).

https://dx.doi.org/10.1016/j.snb.2019.02.047

Wohltjen, H., Dessy, R., Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal. Chem., 51(9), 1458–1464 (1979).

https://dx.doi.org/10.1021/ac50045a024

Xu, Y.-L., He, J., Sensors and sensory systems, In: Smart Civil Structures, Taylor & Francis, 61–85 (2017).

https://doi.org/10.1201/9781315368917

Contact Us

Powered by

Powered by OJS