Open Access

Synthesis of Ag-decorated TiO2 Nanoparticles for Ammonia Gas Sensor Application

P. Anil Kumar, Department of Chemistry, KPR Institute of Engineering and Technology, Coimbatore, TN, India T. Kalaivani, Department of Chemistry, Research & Development Centre, Bharathiar University, Coimbatore, TN, India Samridhi, Department of Physics, Banasthali Vidyapith, Banasthali, RJ, India K. Balachandran balachandran@vcew.ac.in
Department of Chemistry, Vivekanandha College of Engineering for Women, Namakkal, TN, India


J. Environ. Nanotechnol., Volume 10, No 3 (2021) pp. 25-34

https://doi.org/10.13074/jent.2021.09.213443

PDF


Abstract

In this research, nanometer-sized clusters of TiO2 have been successfully synthesized through the Sol-gel method. Further, different concentrations of Ag were deposited on TiO2. After the successful deposition of Ag on TiO2, the gas sensing performance of the sample has been studied at different exposure of NH3 (ammonia) gas. Analysis has been done via XRD to evaluate the grain size of the nanoparticles and calculated as 18 nm for TiO2 and 12 nm for 5 % Ag-doped TiO2. EDS has been conducted, ensuring that Ag has been successfully decorated on the superficial of TiO2. The formation of nano-size particles has been confirmed by TEM analysis. FTIR analysis confirmed the existence of TiO2 and Ag. The surface state emission of TiO2: Ag nanoparticles can be seen in the PL spectrum at 383 nm, 450 nm and 465 nm. As the exposure of NH3 gas increases from 50 to 250 ppm, the impedance range displayed a decrease in semicircle radius, which was then marginally increased. The variance in resistance also contributed to the gas sensing properties due to grain boundaries, in accordance with impedance spectroscopy review.

Full Text

Reference


Ament, W., Huizenga, J., Kort, E., van der Mark, T., Grevink, R. and Verkerke, G., Respiratory ammonia output and blood ammonia concentration during incremental exercise, Int. J. Sports Med., 20(2), 71–77 (1999).

https://dx.doi.org/10.1055/s-2007-971096

Balachandran, K., Mageswari, S. and Preethi, A., Photocatalytic decomposition of A549-lung cancer cancer cells by TiO2 nanoparticles, Mater. Today Proc., 37(2), 1071–1074 (2021).

https://dx.doi.org/10.1016/j.matpr.2020.06.297

Balachandran, K., Mariappan, R. and Vijayan, S., Photocatalytic Activity of PVA Modified TiO2 Nanoparticles, J. Environ. Nanotechnol., 7(1), 01–11 (2018).

https://dx.doi.org/10.13074/jent.2018.03.181295

Blešić, M. D., Šaponjić, Z. , Nedeljković, J. and Uskoković, D., TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor, Mater. Lett., 54(4), 298–302 (2002).

https://dx.doi.org/10.1016/S0167-577X(01)00581-X

Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., Harris, N., Kivioja, J. and Ryhänen, T., Ultrafast graphene oxide humidity sensors, ACS Nano., 7(12), 11166–11173 (2013).

https://dx.doi.org/10.1021/nn404889b

Carotta, M., Ferroni, M., Gnani, D., Guidi, V., Merli, M., Martinelli, G., Casale, M. and Notaro, M., Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring, Sens. Actuators B Chem., 58(1–3), 310–317 (1999).

https://dx.doi.org/10.1016/S0925-4005(99)00148-3

De la Hoz, R. E., Schlueter, D. P. and Rom, W. N., Chronic lung disease secondary to ammonia inhalation injury: A report on three cases, Am. J. Ind. Med., 29(2), 209–214 (1996).

https://dx.doi.org/10.1002/(SICI)1097-0274(199602)29:2<209::AID-AJIM12>3.0.CO;2-7

Erisman, J., Instrument development and application in studies and monitoring of ambient ammonia, Atmos. Environ., 35(11), 1913–1922 (2001).

https://dx.doi.org/10.1016/S1352-2310(00)00544-6

Gurlo, A., Nanosensors: Towards morphological control of gas sensing activity. SnO2 , In2O3, ZnO and WO3 case studies, Nanoscale., 3(1), 154–165 (2011).

https://dx.doi.org/10.1039/C0NR00560F

Hossein-Babaei, F., Lajvardi, M. M. and Boroumand, F. A., Large area Ag–TiO2 UV radiation sensor fabricated on a thermally oxidized titanium chip, Sens. Actuators A Phys., 173(1), 116–121 (2012).

https://dx.doi.org/10.1016/j.sna.2011.10.028

Izu, N., Hagen, G., Schönauer, D., Röder-Roith, U. and Moos, R., Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors, Sensors., 11(3), 2982–2991 (2011).

https://dx.doi.org/10.3390/s110302982

Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Botanical hydrocarbon sources based MWCNTs synthesized by spray pyrolysis method for DSSC applications, Silicon., 10(2), 211–217 (2018).

https://dx.doi.org/10.1007/s12633-016-9419-7

Kalaivani, T. and Anilkumar, P., Role of Temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method, Silicon., 10(4), 1679–1686 (2018a).

https://dx.doi.org/10.1007/s12633-017-9652-8

Kalaivani, T., AnilKumar, P., Synthesis of TiO2:Ce nanoparticles for development of ammonia gas sensors, J. Mater. Sci. Mater. Electron., 29(12), 9920–9929 (2018b).

https://dx.doi.org/10.1007/s10854-018-9034-z

Kılıç, Ç., Zunger, A., Origins of coexistence of conductivity and transparency in SnO2, Phys. Rev. Lett., 88(9), 095501 (2002).

https://dx.doi.org/10.1103/PhysRevLett.88.095501

Lee, D., Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor, Sens. Actuators B Chem., 60(1), 57–63 (1999).

https://dx.doi.org/10.1016/S0925-4005(99)00244-0

Lehner, P., Staudinger, C., Borisov, S. M. and Klimant, I., Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems, Nat. Commun., 5(1), 4460 (2014).

https://dx.doi.org/10.1038/ncomms5460

Liu, X., Yang, J., Wang, L., Yang, X., Lu, L. and Wang, X., An improvement on sol-gel method for preparing ultrafine and crystallized titania powder, Mater. Sci. Eng. A., 289(1–2), 241–245 (2000).

https://dx.doi.org/10.1016/S0921-5093(00)00901-1

McFarland, E. W. and Tang, J., A photovoltaic device structure based on internal electron emission, Nature., 421(6923), 616–618 (2003).

https://dx.doi.org/10.1038/nature01316

Miura, N., Nakatou, M. and Zhuiykov, S., Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature, Sens. Actuators B Chem., 93(1–3), 221–228 (2003).

https://dx.doi.org/10.1016/S0925-4005(03)00196-5

Pinder, R. W., Gilliland, A. B., Dennis, R. L., Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States, Geophys. Res. Lett., 35(12), n/a-n/a (2008).

https://dx.doi.org/10.1029/2008GL033732

Ruiz, A. M., Arbiol, J., Cornet, A., Shimanoe, K., Morante, J. R., Yamazoe, N., HRTEM/EELS Analysis, structural characterization and sensor performances of hydrothermal nano-TiO2, MRS Proc., 828, A4.10 (2004).

https://dx.doi.org/10.1557/PROC-828-A4.10

Samridhi, Singh, K. and Alvi, P. A., Influence of the pressure range on temperature coefficient of resistivity (TCR) for polysilicon piezoresistive MEMS pressure sensor, Phys. Scr., 95(7), 075005 (2020).

https://dx.doi.org/10.1088/1402-4896/ab93e7

Sharma, M., Aljawfi, R. N., Kumari, K., Chae, K. H., Gautam, S., Dalela, S., Alvi, P. A., Kumar, S., Investigation of local atomic structure of Ni-doped SnO2 thin films via X-ray absorption spectroscopy and their magnetic properties, J. Mater. Sci. Mater. Electron., 30(1), 760–770 (2019a).

https://dx.doi.org/10.1007/s10854-018-0345-x

Sharma, M., Naji Aljawfi, R., Kumari, K., Chae, K. H., Dalela, S., Gautam, S., Alvi, P. A., Kumar, S., Investigation of local geometrical structure, electronic state and magnetic properties of PLD grown Ni-doped SnO2 thin films, J. Electron Spectros. Relat. Phenomena., 232, 21–28 (2019b).

https://dx.doi.org/10.1016/j.elspec.2019.01.002

Shi, L., Naik, A. J. T., Goodall, J. B. M., Tighe, C., Gruar, R., Binions, R., Parkin, I. and Darr, J., Highly Sensitive ZnO Nanorod- and Nanoprism-Based NO2 Gas Sensors: Size and shape control using a Continuous Hydrothermal Pilot Plant, Langmuir., 29(33), 10603–10609 (2013).

https://dx.doi.org/10.1021/la402339m

Sutka, A., Mezinskis, G., Lusis, A. and Jakovlevs, D., Influence of iron non-stoichiometry on spinel zinc ferrite gas sensing properties, Sens. Actuators B Chem., 171–172, 204–209 (2012).

https://dx.doi.org/10.1016/j.snb.2012.03.012

Tang, Y.-L., Li, Z.-J., Ma, J.-Y., Guo, Y.-J., Fu, Y.-Q. and Zu, X.-T., Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices, Sens. Actuators B Chem., 201, 114–121 (2014).

https://dx.doi.org/10.1016/j.snb.2014.04.046

Wang, S.-Y., Ma, J.-Y., Li, Z.-J., Su, H. Q., Alkurd, N. R., Zhou, W.-L., Wang, L., Du, B., Tang, Y.-L., Ao, D.-Y., Zhang, S.-C., Yu, Q. K., Zu, X.-T., Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film, J. Hazard. Mater., 285, 368–374 (2015).

https://dx.doi.org/10.1016/j.jhazmat.2014.12.014

Weppner, W., Solid-state electrochemical gas sensors, Sens. Actuators., 12(2), 107–119 (1987).

https://dx.doi.org/10.1016/0250-6874(87)85010-2

Yu’e, L. and Erda, L., Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China, Nutr. Cycl. Agroecosystems., 57(1), 99–106 (2000).

https://dx.doi.org/10.1023/A:1009828705104

Contact Us

Powered by

Powered by OJS