Open Access

Studies on Nd-doped Barium Cerate Nano-Sized Catalyst in Converting CH4 into CO2 at Lower Temperature

Khalid Ouzaouit, IM2NP Institute (UMR CNRS 7334), Sud Toulon-Var University, BP.132,83957 La Grade, France Abdelhay Aboulaich abdelhay.aboulaich@um6p.ma
Materials Science and Nano-Engineering Department, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 7 Benguerir, Morocco


J. Environ. Nanotechnol., Volume 10, No 3 (2021) pp. 01-08

https://doi.org/10.13074/jent.2021.09.213439

PDF


Abstract

The present paper describes the synthesis and first application of Nd-doped Barium cerate (BaCeO3) nanoparticles as catalyst for the catalytic oxidation of methane (CH4) into CO2. Nd-doped BaCeO3 nanoparticles, with the formula BaNdxCe(1-x)O3, have been prepared using a simple sol gel method starting from acetate precursors. The as-prepared nanoparticles have been fully characterized by XRD, TEM, HRTEM and specific surface area measurements. Results confirmed the formation of highly crystallized nano-sized particles with small crystallite size. In-situ FTIR spectroscopy was used to study the catalytic conversion of methane (CH4) into CO2 in the presence of the as-prepared Nd-doped BaCeO3 nanocatalyst. The catalytic properties of such nanocatalysts have been discussed and correlated to Nd-doping rate, crystallite diameter and specific surface area of the materials. Excellent catalytic properties have been obtained with BaNd0.05Ce0.95O3, such as superior conversion efficiency, longer catalysis lifetime and lower activation temperature compared to un-doped BaCeO3 catalyst. Interestingly, it was found that BaNd0.05Ce0.95O3 nanocatalyst successfully converts the totality of CH4 present in a mixture of CH4-Air into CO2 at a much lower temperature compared to the conventional Pd/Al2O3 catalyst.

Full Text

Reference


Arai, H., Yamada, T., Eguchi, K. and Seiyama, T., Catalytic combustion of methane over various perovskite-type oxides, Appl. Catal., 26, 265–276 (1986).

https://dx.doi.org/10.1016/S0166-9834(00)82556-7

Bhowmick, S., Basu, J., Xue, Y. and Carter, C. B., Hydrothermal synthesis of nanocrystalline barium cerate using hexamethylenetetramine, J. Am. Ceram. Soc., 93(12), 4041–4046 (2010).

https://dx.doi.org/10.1111/j.1551-2916.2010.03998.x

Boucher, O. and Folberth, G. A., New Directions: Atmospheric methane removal as a way to mitigate climate change?, Atmos. Environ., 44(27), 3343–3345 (2010).

https://dx.doi.org/10.1016/j.atmosenv.2010.04.032

Brunauer, S., Emmett, P. H. and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60(2), 309–319 (1938).

https://dx.doi.org/10.1021/ja01269a023

Cheng, Z., Qin, L., Guo, M., Xu, M., Fan, J. A. and Fan, L.-S., Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process, Phys. Chem. Chem. Phys., 18(47), 32418–32428 (2016).

https://dx.doi.org/10.1039/C6CP06264D

Cui, X., Li, H., Wang, Y., Hu, Y., Hua, L., Li, H., Han, X., Liu, Q., Yang, F., He, L., Chen, X., Li, Q., Xiao, J., Deng, D. and Bao, X., Room-temperature methane conversion by graphene-confined single iron atoms, Chem., 4(8), 1902–1910 (2018).

https://dx.doi.org/10.1016/j.chempr.2018.05.006

de_Richter, R., Ming, T., Davies, P., Liu, W. and Caillol, S., Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis, Prog. Energy Combust. Sci., 60, 68–96 (2017).

https://dx.doi.org/10.1016/j.pecs.2017.01.001

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X. and Zaehle, S., Global carbon budget 2020, Earth Syst. Sci. Data., 12(4), 3269–3340 (2020).

https://dx.doi.org/10.5194/essd-12-3269-2020

Igenegbai, V. O., Meyer, R. J. and Linic, S., In search of membrane-catalyst materials for oxidative coupling of methane: Performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping, Appl. Catal. B Environ., 230, 29–35 (2018).

https://dx.doi.org/10.1016/j.apcatb.2018.02.040

Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M. and Field, C. B., Methane removal and atmospheric restoration, Nat. Sustain., 2(6), 436–438 (2019).

https://dx.doi.org/10.1038/s41893-019-0299-x

Lee, J. H. and Trimm, D. L., Catalytic combustion of methane, Fuel Process. Technol., 42(2–3), 339–359 (1995).

https://dx.doi.org/10.1016/0378-3820(94)00091-7

Madhuri Sailaja, J., Vijaya Babu, K., Murali, N. and Veeraiah, V., Effect of strontium on Nd doped Ba1− xSrxCe0.65Zr0.25Nd0.1O3− δ proton conductor as an electrolyte for solid oxide fuel cells, J. Adv. Res., 8(3), 169–181 (2017).

https://dx.doi.org/10.1016/j.jare.2016.12.006

Matthews, H. D. and Caldeira, K., Stabilizing climate requires near-zero emissions, Geophys. Res. Lett., 35(4), L04705 (2008).

https://dx.doi.org/10.1029/2007GL032388

Rishee Kumar Singh, Vikas Srivastava, Atul, Ashhad Imam, Mehta, An endeavour to decrease CO2 outflow through efficient use of supplementary cementitious materials in construction, J. Environ. Nanotechnol., 9(3), 30–33 (2020).

https://dx.doi.org/10.13074/jent.2020.09.203420

Roisnel, T. and Rodriguez-Carvajal, WinPLOTR: A Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum., (378-381), 118–123 (2001).

https://dx.doi.org/10.4028/www.scientific.net/MSF.378-381.118

Senthil Kumar, A., Balaji, R., Puviarasu, P. and Jayakumar, S., Structural and morphological analysis of barium cerate electrolyte for SOFC application, Mater. Sci., 35(1), 120–125 (2017).

https://dx.doi.org/10.1515/msp-2017-0021

Shimazaki, Y., Arai, N., Dunn, T. J., Yajima, T., Tani, F., Ramogida, C. F. and Storr, T., Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes, Dalt. Trans., 40(11), 2469-2479 (2011).

https://dx.doi.org/10.1039/c0dt01574a

Su, X., Yan, Q., Ma, X., Zhang, W., Ge, C., Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte, Solid State Ionics., 177(11–12), 1041–1045 (2006).

https://dx.doi.org/10.1016/j.ssi.2006.02.047

Wu, J., Davies, R. A., Islam, M. S. and Haile, S. M., Atomistic study of doped BaCeO3 : Dopant site-selectivity and cation nonstoichiometry, Chem. Mater., 17(4), 846–851 (2005).

https://dx.doi.org/10.1021/cm048763z

Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H., Oyama, T., Matsuda, T., Kobayashi, S. and Kurosaki, K., Thermophysical properties of BaZrO3 and BaCeO3, J. Alloys Compd., 359(1–2), 109–113 (2003).

https://dx.doi.org/10.1016/S0925-8388(03)00214-7

Contact Us

Powered by

Powered by OJS