Studies on Nd-doped Barium Cerate Nano-Sized Catalyst in Converting CH4 into CO2 at Lower Temperature
J. Environ. Nanotechnol., Volume 10, No 3 (2021) pp. 01-08
Abstract
The present paper describes the synthesis and first application of Nd-doped Barium cerate (BaCeO3) nanoparticles as catalyst for the catalytic oxidation of methane (CH4) into CO2. Nd-doped BaCeO3 nanoparticles, with the formula BaNdxCe(1-x)O3, have been prepared using a simple sol gel method starting from acetate precursors. The as-prepared nanoparticles have been fully characterized by XRD, TEM, HRTEM and specific surface area measurements. Results confirmed the formation of highly crystallized nano-sized particles with small crystallite size. In-situ FTIR spectroscopy was used to study the catalytic conversion of methane (CH4) into CO2 in the presence of the as-prepared Nd-doped BaCeO3 nanocatalyst. The catalytic properties of such nanocatalysts have been discussed and correlated to Nd-doping rate, crystallite diameter and specific surface area of the materials. Excellent catalytic properties have been obtained with BaNd0.05Ce0.95O3, such as superior conversion efficiency, longer catalysis lifetime and lower activation temperature compared to un-doped BaCeO3 catalyst. Interestingly, it was found that BaNd0.05Ce0.95O3 nanocatalyst successfully converts the totality of CH4 present in a mixture of CH4-Air into CO2 at a much lower temperature compared to the conventional Pd/Al2O3 catalyst.
Full Text
Reference
Arai, H., Yamada, T., Eguchi, K. and Seiyama, T., Catalytic combustion of methane over various perovskite-type oxides, Appl. Catal., 26, 265–276 (1986).
https://dx.doi.org/10.1016/S0166-9834(00)82556-7
Bhowmick, S., Basu, J., Xue, Y. and Carter, C. B., Hydrothermal synthesis of nanocrystalline barium cerate using hexamethylenetetramine, J. Am. Ceram. Soc., 93(12), 4041–4046 (2010).
https://dx.doi.org/10.1111/j.1551-2916.2010.03998.x
Boucher, O. and Folberth, G. A., New Directions: Atmospheric methane removal as a way to mitigate climate change?, Atmos. Environ., 44(27), 3343–3345 (2010).
https://dx.doi.org/10.1016/j.atmosenv.2010.04.032
Brunauer, S., Emmett, P. H. and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60(2), 309–319 (1938).
https://dx.doi.org/10.1021/ja01269a023
Cheng, Z., Qin, L., Guo, M., Xu, M., Fan, J. A. and Fan, L.-S., Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process, Phys. Chem. Chem. Phys., 18(47), 32418–32428 (2016).
https://dx.doi.org/10.1039/C6CP06264D
Cui, X., Li, H., Wang, Y., Hu, Y., Hua, L., Li, H., Han, X., Liu, Q., Yang, F., He, L., Chen, X., Li, Q., Xiao, J., Deng, D. and Bao, X., Room-temperature methane conversion by graphene-confined single iron atoms, Chem., 4(8), 1902–1910 (2018).
https://dx.doi.org/10.1016/j.chempr.2018.05.006
de_Richter, R., Ming, T., Davies, P., Liu, W. and Caillol, S., Removal of non-CO2 greenhouse gases by large-scale atmospheric solar photocatalysis, Prog. Energy Combust. Sci., 60, 68–96 (2017).
https://dx.doi.org/10.1016/j.pecs.2017.01.001
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X. and Zaehle, S., Global carbon budget 2020, Earth Syst. Sci. Data., 12(4), 3269–3340 (2020).
https://dx.doi.org/10.5194/essd-12-3269-2020
Igenegbai, V. O., Meyer, R. J. and Linic, S., In search of membrane-catalyst materials for oxidative coupling of methane: Performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping, Appl. Catal. B Environ., 230, 29–35 (2018).
https://dx.doi.org/10.1016/j.apcatb.2018.02.040
Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M. and Field, C. B., Methane removal and atmospheric restoration, Nat. Sustain., 2(6), 436–438 (2019).
https://dx.doi.org/10.1038/s41893-019-0299-x
Lee, J. H. and Trimm, D. L., Catalytic combustion of methane, Fuel Process. Technol., 42(2–3), 339–359 (1995).
https://dx.doi.org/10.1016/0378-3820(94)00091-7
Madhuri Sailaja, J., Vijaya Babu, K., Murali, N. and Veeraiah, V., Effect of strontium on Nd doped Ba1− xSrxCe0.65Zr0.25Nd0.1O3− δ proton conductor as an electrolyte for solid oxide fuel cells, J. Adv. Res., 8(3), 169–181 (2017).
https://dx.doi.org/10.1016/j.jare.2016.12.006
Matthews, H. D. and Caldeira, K., Stabilizing climate requires near-zero emissions, Geophys. Res. Lett., 35(4), L04705 (2008).
https://dx.doi.org/10.1029/2007GL032388
Rishee Kumar Singh, Vikas Srivastava, Atul, Ashhad Imam, Mehta, An endeavour to decrease CO2 outflow through efficient use of supplementary cementitious materials in construction, J. Environ. Nanotechnol., 9(3), 30–33 (2020).
https://dx.doi.org/10.13074/jent.2020.09.203420
Roisnel, T. and Rodriguez-Carvajal, WinPLOTR: A Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum., (378-381), 118–123 (2001).
https://dx.doi.org/10.4028/www.scientific.net/MSF.378-381.118
Senthil Kumar, A., Balaji, R., Puviarasu, P. and Jayakumar, S., Structural and morphological analysis of barium cerate electrolyte for SOFC application, Mater. Sci., 35(1), 120–125 (2017).
https://dx.doi.org/10.1515/msp-2017-0021
Shimazaki, Y., Arai, N., Dunn, T. J., Yajima, T., Tani, F., Ramogida, C. F. and Storr, T., Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(ii)-(disalicylidene)diamine complexes, Dalt. Trans., 40(11), 2469-2479 (2011).
https://dx.doi.org/10.1039/c0dt01574a
Su, X., Yan, Q., Ma, X., Zhang, W., Ge, C., Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte, Solid State Ionics., 177(11–12), 1041–1045 (2006).
https://dx.doi.org/10.1016/j.ssi.2006.02.047
Wu, J., Davies, R. A., Islam, M. S. and Haile, S. M., Atomistic study of doped BaCeO3 : Dopant site-selectivity and cation nonstoichiometry, Chem. Mater., 17(4), 846–851 (2005).
https://dx.doi.org/10.1021/cm048763z
Yamanaka, S., Fujikane, M., Hamaguchi, T., Muta, H., Oyama, T., Matsuda, T., Kobayashi, S. and Kurosaki, K., Thermophysical properties of BaZrO3 and BaCeO3, J. Alloys Compd., 359(1–2), 109–113 (2003).