Selective Fluorescence Chemosensor for Al3+ based on Antipyrine with Furfural Attached Allyl System
J. Environ. Nanotechnol., Volume 10, No 2 (2021) pp. 01-05
Abstract
By incorporating Furfural-Antipyrine as coordinate sites into the fragment of receptor Furfural Baylis Hillman-Antipyrine (FBH-AP), it can be used as an artificial chemosensor for selective recognition of transition metals. The strong fluorescence emission at 388 nm of the receptor FBH-AP is effectively and selectively quenched by Al3+. A 1:1 complex formed between the FBH-AP and Al3+ is determined by the Jobs plot and their common interferent ions do not show any interference with Al3+. It is anticipated that the antipyrine could be a good candidate probe and has potential application for Al3+ determination.
Full Text
Reference
Ahmad, M. and Narayanaswamy, R., Optical fibre Al(III) sensor based on solid surface fluorescence measurement, Sens. Actuators B Chem., 81(2–3), 259–266 (2002).
https://dx.doi.org/10.1016/S0925-4005(01)00961-3
Andrási, E., Páli, N., Molnár, Z. and Kösel, S., Brain aluminum, magnesium and phosphorus contents of control and alzheimer-diseased patients, J. Alzheimer’s Dis., 7(4), 273–284 (2005).
https://dx.doi.org/10.3233/JAD-2005-7402
Banumathi, P., Tamil selvan, G., Selvakumar Paulraj, M. and Rajasingh, P., Synthesis of antipyrine based organic material for Zn2+ ion sensing and implication in logic gate analysis, Mater Today Proc., (2020).
https://dx.doi.org/10.1016/j.matpr.2020.07.084
Burnworth, M., Rowan, S. J. and Weder, C., Fluorescent sensors for the detection of chemical warfare agents, Chem. - A Eur. J., 13(28), 7828–7836 (2007).
https://dx.doi.org/10.1002/chem.200700720
Chebrolu, L. D., Thurakkal, S., Balaraman, H. S. and Danaboyina, R., Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline–carbaldehyde chemosensor, Sens. Actuators B., 204, 480–488 (2014).
https://dx.doi.org/10.1016/j.snb.2014.07.124
Cheng, X., Yu, Y., Jia, Y. and Duan, L., Fluorescent PU films for detection and removal of Hg2+, Cr3+ and Fe3+ ions, Mater. Des., 95, 133–140 (2016).
https://dx.doi.org/10.1016/j.matdes.2016.01.103
Datta, B. K., Kar, C., Basu, A. and Das, G., Selective fluorescence sensor for Al3+ and Pb2+ in physiological condition by a benzene based tripodal receptor, Tetrahedron Lett., 54(8), 771–774 (2013).
https://dx.doi.org/10.1016/j.tetlet.2012.11.114
Dessingou, J., Tabbasum, K., Mitra, A., Hinge, V. K. and Rao, C. P., Lower rim 1,3-Di{4-antipyrine}amide conjugate of Calix[4]arene: synthesis, characterization, and selective recognition of Hg2+ and its sensitivity toward pyrimidine bases, J. Org. Chem., 77(3), 1406–1413 (2012).
https://dx.doi.org/10.1021/jo2022372
Geddes, C. D. and Lakowicz, J. R., Probe and Sensors for Cations: Small molecule sensing in topics in fluorescene spectroscopy, Springer, 328–330 (2005).
Guo, Z., Zhu, W., Shen, L. and Tian, H., A Fluorophore Capable of Crossword Puzzles and Logic Memory, Angew. Chemie Int. Ed., 46(29), 5549–5553 (2007).
https://dx.doi.org/10.1002/anie.200700526
Gupta, V. K., Singh, A. K. and Kumawat, L. K., Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion, Sens. Actuators B., 195, 98–108 (2014a).
https://dx.doi.org/10.1016/j.snb.2013.12.092
Gupta, V. K., Singh, A. K. and Mergu, N., Antipyrine based Schiff bases as Turn-on Fluorescent sensors for Al (III) ion, Electrochim. Acta., 117, 405–412 (2014b).
https://dx.doi.org/10.1016/j.electacta.2013.11.143
Han, J. and Burgess, K., Fluorescent Indicators for Intracellular pH, Chem. Rev., 110(5), 2709–2728 (2010).
https://dx.doi.org/10.1021/cr900249z
Helal, A., Kim, S. H. and Kim, H.-S., A highly selective fluorescent turn-on probe for Al3+ via Al3+-promoted hydrolysis of ester, Tetrahedron Lett., 69(30), 6095–6099 (2013).
https://dx.doi.org/10.1016/j.tet.2013.05.062
Kaur, K., Bhardwaj, V. K., Kaur, N. and Singh, N., Imine linked fluorescent chemosensor for Al3+ and resultant complex as a chemosensor for HSO4− anion, Inorg. Chem. Commun., 18, 79–82 (2012).
https://dx.doi.org/10.1016/j.inoche.2012.01.018
Kim, H. M. and Cho, B. R., Two-photon fluorescent probes for metal ions, Chem. Asian J., 6(1), 58–69 (2011a).
https://dx.doi.org/10.1002/asia.201000542
Kim, H. N., Guo, Z., Zhu, W., Yoon, J. and Tian, H., Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev., 40(1), 79–93 (2011b).
https://dx.doi.org/10.1039/C0CS00058B
Kim, J. S. and Quang, D. T., Calixarene-derived fluorescent probes, Chem. Rev., 107(9), 3780–3799 (2007).
https://dx.doi.org/10.1021/cr068046j
Kim, S. K. and Sessler, J. L., Ion pair receptors, Chem. Soc. Rev., 39(10), 3784 (2010).
https://dx.doi.org/10.1039/c002694h
Kim, S., Noh, J. Y., Kim, K. Y., Kim, J. H., Kang, H. K., Nam, S.-W., Kim, S. H., Park, S., Kim, C. and Kim, J., Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging, Inorg. Chem., 51(6), 3597–3602 (2012).
https://dx.doi.org/10.1021/ic2024583
Maity, D. and Govindaraju, T., A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media, Chem. Commun., 48(7), 1039–1041 (2012).
https://dx.doi.org/10.1039/C1CC16064H
Pischel, U., Chemical approaches to molecular Logic elements for addition and subtraction, Angew. Chem. Int. Ed., 46(22), 4026–4040 (2007).
https://dx.doi.org/10.1002/anie.200603990
Rurack, K. and Resch-Genger, U., Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev., 31(2), 116–127 (2002).
https://dx.doi.org/10.1039/b100604p
Saini, A. K., Sharma, V., Mathur, P. and Shaikh, M. M., The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining, Sci. Rep., 6(1), 34807 (2016).
https://dx.doi.org/10.1038/srep34807
Selvan, G. T., Poomalai, S., Ramasamy, S., Selvakumar, P. M., Muthu Vijayan Enoch, I. V, Lanas, S. G. and Melchior, A., Differential metal ion sensing by an antipyrine derivative in aqueous and β-Cyclodextrin media: Selectivity tuning by β-Cyclodextrin, Anal. Chem., 90(22), 13607–13615 (2018).
https://dx.doi.org/10.1021/acs.analchem.8b03810
Shanmugam, P. and Rajasingh, P., Montmorillonite K10 clay catalyzed mild, clean, solvent free one-pot protection-isomerisation of the Baylis–Hillman adducts with alcohols, Chem. Lett., 31(12), 1212–1213 (2002).
https://dx.doi.org/10.1246/cl.2002.1212
Shanmugam, P. and Rajasingh, P., Studies on montmorillonite K10-microwave assisted isomerisation of Baylis–Hillman adduct. Synthesis of E-trisubstituted alkenes and synthetic application to lignan core structures by vinyl radical cyclization, Tetrahedron Lett., 60(41), 9283–9295 (2004).
https://dx.doi.org/10.1016/j.tet.2004.07.067
Shanmugam, P. and Rajasingh, P., Stereoselective synthesis of tri- and tetrasubstituted oxepanes via n-Bu3SnH mediated 7-endo-trig vinyl radical cyclisation, Tetrahedron Lett., 46(19), 3369–3372 (2005).
https://dx.doi.org/10.1016/j.tetlet.2005.03.086
Tamil Selvan, G., Varadaraju, C., Tamil Selvan, R., Enoch, I. V. M. V. and Mosae Selvakumar, P., On/Off fluorescent chemosensor for selective detection of divalent iron and copper ions: Molecular logic operation and protein binding, ACS Omega, 3(7), 7985–7992 (2018).
https://dx.doi.org/10.1021/acsomega.8b00748
Tamil Selvan, R., Tamil Selvan, G., Varadaraju, C., Enoch, I. V. M. V. and Mosae Selvakumar, P., Design and synthesis of a tripodal receptor for the selective detection of Fe3+, Mater. Today Proc., 33, 2139–2143 (2020).
https://dx.doi.org/10.1016/j.matpr.2020.03.069
Vengaian, K. M., Britto, C. D., Sivaraman, G., Sekar, K. and Singaravadivel, S., Phenothiazine based sensor for naked-eye detection and bioimaging of Hg(II) and F− ions, RSC Adv., 5(115), 94903–94908 (2015).
https://dx.doi.org/10.1039/C5RA19341A
Yin, J., Hu, Y. and Yoon, J., Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH, Chem. Soc. Rev., 44(14), 4619–4644 (2015).
https://dx.doi.org/10.1039/C4CS00275J
You, Q.-H., Chan, P.-S., Chan, W.-H., Hau, S. C. K., Lee, A. W. M., Mak, N. K., Mak, T. C. W. and Wong, R. N. S., A quinolinyl antipyrine based fluorescence sensor for Zn2+ and its application in bioimaging, RSC Adv., 2(29), 11078 (2012).