Facile Solvothermal Synthesis and Characterization Studies of Pure and Lead-doped Cadmium Sulfide Nanoparticles for Potential Photovoltaic Applications
J. Environ. Nanotechnol., Volume 10, No 1 (2021) pp. 19-24
Abstract
Pure and Pb-doped Cadmium Sulfide (CdS) nanoparticles were synthesized using a straight forwarded solvothermal technique. The powder X-ray diffraction (PXRD) studies done on the sample synthesized revealed the wurtzite phase of nanoparticles with improved crystalline properties due to the integration of dopant Pb into the host CdS. The UV-Vis characterization studies also reveal enhanced optical properties of the nanoparticles, which can be efficiently tapped for various photovoltaic applications.
Full Text
Reference
Abd El-Sadek, M. S., Wasly, H. S. and Batoo, K. M., X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method, Appl. Phys., A 125(4), 283 (2019).
https://dx.doi.org/10.1007/s00339-019-2576-y
Arya, S., Sharma, A., Singh, B., Riyas, M., Bandhoria, P., Aatif, M. and Gupta, V., Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode, Opt. Mater., 79, 115–119 (2018).
https://dx.doi.org/10.1016/j.optmat.2018.03.035
Barglik-Chory, C., Remenyi, C., Dem, C., Schmitt, M., Kiefer, W., Gould, C., Rüster, C., Schmidt, G., Hofmann, D. M., Pfisterer, D. and Müller, G., Synthesis and characterization of manganese-doped CdS nanoparticles, Phys. Chem. Chem. Phys., 5(8), 1639–1643 (2003).
https://dx.doi.org/10.1039/b300343d
Chauhan, R., Kumar, A. and Chaudhary, R. P., Visible-light photocatalytic degradation of methylene blue with Fe doped CdS nanoparticles, Appl. Surf. Sci., 270, 655–660 (2013).
https://dx.doi.org/10.1016/j.apsusc.2013.01.110
Ertis, I. F., Boz, I., Synthesis and characterization of metal-doped (Ni, Co, Ce, Sb) CdS catalysts and their use in methylene blue degradation under visible light irradiation, Mod. Res. Catal., 06(01), 01–14 (2017).
https://dx.doi.org/10.4236/mrc.2017.61001
Iqbal, T., Ara, G., Khalid, N. R. and Ijaz, M., Simple synthesis of Ag-doped CdS nanostructure material with excellent properties, Appl. Nanosci., 10(1), 23–28 (2020).
https://dx.doi.org/10.1007/s13204-019-01044-y
Khan, A., Shkir, M., Manthrammel, M. A., Ganesh, V., Yahia, I. S., Ahmed, M., El-Toni, A. M., Aldalbahi, A., Ghaithan, H. and AlFaify, S., Effect of Gd doping on structural, optical properties, photoluminescence and electrical characteristics of CdS nanoparticles for optoelectronics, Ceram. Int., 45(8), 10133–10141 (2019a).
https://dx.doi.org/10.1016/j.ceramint.2019.02.061
Khan, M. J. I., Kanwal, Z., Usmani, M. N., Zeeshan, M. and Yousaf, M., An insight into optical properties of Pb:CdS system (a theoretical study), Mater. Res. Express., 6(6), 65904 (2019b).
https://dx.doi.org/10.1088/2053-1591/ab0abf
Kim, J.-Y., Jang, Y. J., Park, J., Kim, J., Kang, J. S., Chung, D. Y., Sung, Y.-E., Lee, C., Lee, J. S. and Ko, M. J., Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion, Appl. Catal. B Environ., 227, 409–417 (2018).
https://dx.doi.org/10.1016/j.apcatb.2018.01.041
Li, Y., Liao, H., Ding, Y., Fan, Y., Zhang, Y. and Qian, Y., Solvothermal elemental direct reaction to CdE (E = S, Se, Te) semiconductor nanorod, Inorg. Chem., 38(7), 1382–1387 (1999).
https://dx.doi.org/10.1021/ic980878f
Loudhaief, N., Labiadh, H., Hannachi, E., Zouaoui, M., Salem, M. and Ben, Synthesis of CdS nanoparticles by hydrothermal method and their effects on the electrical properties of bi-based superconductors, J. Supercond. Nov. Magn., 31(8), 2305–2312 (2018).
https://dx.doi.org/10.1007/s10948-017-4496-4
Malashchonak, M. V., Mazanik, A. V., Korolik, O. V., Streltsov, E. A. and Kulak, A. I., Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method, Beilstein J. Nanotechnol., 6(1), 2252–2262 (2015).
https://dx.doi.org/10.3762/bjnano.6.231
Maleki, M., Sasani Ghamsari, M., Mirdamadi, S. and Ghasemzadeh, R., A facile route for preparation of CdS nanoparticles, Semicond. Physics, Quantum Electron. Optoelectron., 10(1), 30–32 (2007).
https://dx.doi.org/10.15407/spqeo10.01.030
Manthrammel, M. A., Ganesh, V., Shkir, M., Yahia, I. S. and Alfaify, S., Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application, Mater. Res. Express., 6(2), 025022 (2018).
https://dx.doi.org/10.1088/2053-1591/aaed9c
Martínez-Alonso, C., Rodríguez-Castañeda, C. A., Moreno-Romero, P., Coria-Monroy, C. S. and Hu, H., Cadmium sulfide nanoparticles synthesized by microwave heating for hybrid solar cell applications, Int. J. Photoenergy., 2014, 01–11 (2014).
https://dx.doi.org/10.1155/2014/453747
Nabiyouni, G., Azizi, E. and Nasrollahi, N., A simple microwave method for synthesis of CdS nanoparticles, J. Clust. Sci., 24(4), 1043–1055 (2013).
https://dx.doi.org/10.1007/s10876-013-0596-x
Nag, A., Sapra, S., Gupta, S. Sen, Prakash, A., Ghangrekar, A., Periasamy, N. and Sarma, D. D., Luminescence in Mn-doped CdS nanocrystals, Bull. Mater. Sci., 31(3), 561–568 (2008).
https://dx.doi.org/10.1007/s12034-008-0087-0
Priya, M., Saravanan, R. S. S. and Mahadevan, C. K., Novel Synthesis and characterisation of CdS nanoparticles, Energy Procedia., 15, 333–339 (2012).
https://dx.doi.org/10.1016/j.egypro.2012.02.040
Qi, X., Zou, X. and He, S., La doping of CdS for enhanced CdS/CdSe quantum dot cosensitized solar cells, J. Chem., 2015, 01–07 (2015).
https://dx.doi.org/10.1155/2015/710140
Saravanan, R. S. S., Pukazhselvan, D. and Mahadevan, C. K., Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics, J. Alloys Compd., 517, 139–148 (2012).
https://dx.doi.org/10.1016/j.jallcom.2011.12.060
Veerathangam, K., Senthil Pandian, M. and Ramasamy, P., Photovoltaic performance of Pb-doped CdS quantum dots for solar cell application, Mater. Lett., 220, 74–77 (2018).