Open Access

Biological Approaches for Synthesis of Silver Nanoparticles for Environmental Applications - A Review

Shreya shreyamodi20@gmail.com
Centre of Research for development, Parul University, GJ, India


J. Environ. Nanotechnol., Volume 9, No 3 (2020) pp. 38-61

https://doi.org/10.13074/jent.2020.06.203415

PDF


Abstract

Nanotechnology is an emerging field in the area of interdisciplinary research, especially in biotechnology. Over the past few decades, nanoparticles of noble metals such as silver exhibited significantly distinct physical, chemical and biological properties from their bulk counterparts. Silver nanoparticles are particles of silver that are in the range of 1 to 100 nm in size. Several products of colloidal silver are already available in the market. The major methods used for silver nanoparticle synthesis are the physical and chemical methods, which are expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a reliable, economic, eco-friendly and feasible alternative. The major biological systems involved are bacteria, fungi and plant extracts. Silver nanoparticles have broad-spectrum applications due to their advanced properties such as high surface area to volume ratio and smaller size than bulk silver. Using such nanoparticles, it is possible to solve the environmental pollution problem like drinking water, wastewater, removal of pathogenic microorganisms, heavy metal removal, textile dye removal, pesticide mineralization and food preservation and they can be used as disinfectants. Apart from these, silver nanoparticles are very efficient sensors to detect heavy metals from the environment. This review article provides some information about different modes of silver nanoparticles synthesis using a biological system, and also its fascinating environmental applications.

Full Text

Reference


Ahmad, N., Sharma, S., Singh, V. N., Shamsi, S. F., Fatma, A., Mehta, B. R., Biosynthesis of Silver Nanoparticles from Desmodium triflorum: A Novel Approach Towards Weed Utilization, Biotechnol. Res. Int. 2011, 1–8 (2011).

https://doi.org/10.4061/2011/454090

Alenzi, N., Liao, W.-S., Cremer, P. S., Sanchez-Torres, V., Wood, T. K., Ehlig-Economides, C., Cheng, Z., Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films, Int. J. Hydrogen Energy 35(21), 11768–11775 (2010).

https://doi.org/10.1016/j.ijhydene.2010.08.020

Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science (80-. ). 271(5251), 933–937 (1996).

https://doi.org/10.1126/science.271.5251.933

Ankamwar, B., Damle, C., Ahmad, A., Sastry, M., Biosynthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution, J. Nanosci. Nanotechnol. 5(10), 1665–1671(2005).

https://doi.org/10.1166/jnn.2005.184

Annamalai, A., Christina, V. L. P., Christina, V., Lakshmi, P. T. V., Green synthesis and characterisation of Ag NPs using aqueous extract of Phyllanthus maderaspatensis L., J. Exp. Nanosci. 9(2), 113–119 (2014).

https://doi.org/10.1080/17458080.2011.631041

Aritonang, H. F., Koleangan, H., Wuntu, A. D., Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants’ ( Impatiens balsamina and Lantana camara ) Fresh Leaves and Analysis of Antimicrobial Activity, Int. J. Microbiol. 2019, 1–8 (2019).

https://doi.org/10.1155/2019/8642303

Arora, S., Jain, J., Rajwade, J. M., Paknikar, K. M., Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells, Toxicol. Appl. Pharmacol. 236(3), 310–318 (2009).

https://doi.org/10.1016/j.taap.2009.02.020

Awwad, A. M., Salem, N. M., Abdeen, A. O., Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity, Int. J. Ind. Chem. 4(1), 29 (2013).

https://doi.org/10.1186/2228-5547-4-29

Bae, C. H., Nam, S. H., Park, S. M., Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Appl. Surf. Sci. 197–198, 628–634(2002).

https://doi.org/10.1016/S0169-4332(02)00430-0

Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., Venkataraman, A., Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus, Colloids Surf. B Biointerfaces 68(1), 88–92 (2009).

https://doi.org/10.1016/j.colsurfb.2008.09.022

Banerjee, P., Satapathy, M., Mukhopahayay, A., Das, P., Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis, Bioresour. Bioprocess. 1(1), 3(2014).

https://doi.org/10.1186/s40643-014-0003-y

Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A., Green synthesis of silver nanoparticles using latex of Jatropha curcas, Colloids Surfaces A Physicochem. Eng. Asp. 339(1–3), 134–139 (2009).

https://doi.org/10.1016/j.colsurfa.2009.02.008

Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., Venkataraman, A., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum, Mater. Res. Bull. 43(5), 1164–1170(2008).

https://doi.org/10.1016/j.materresbull.2007.06.020

Bellinger, C. G., Conway, H., Effect of Silver Nitrate and Sulfamylon on Epithelial Regeneration, Plast. Reconstr.

Surg. 45(6), 582–585 (1970).

https://doi.org/10.1097/00006534-197006000-00009

Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., Rai, M. K., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli , Pseudomonas aeruginosa and Staphylococcus aureus, Lett. Appl. Microbiol. 48(2), 173–179 (2009).

https://doi.org/10.1111/j.1472-765X.2008.02510.x

Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels, Science (80-. ). 281(5385), 2013–2016 (1998).

https://doi.org/10.1126/science.281.5385.2013

Cannilla, C., Bonura, G., Frusteri, F., Spadaro, D., Trocino, S., Neri, G., Development of an ammonia sensor based on silver nanoparticles in a polymethacrylic acid matrix, J. Mater. Chem. C 2(29),5778 (2014).

https://doi.org/10.1039/c4tc00515e

Carlson, C., Hussain, S. M., Schrand, A. M., K. Braydich-Stolle, L., Hess, K. L., Jones, R. L., Schlager, J. J., Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species, J. Phys. Chem. B 112(43),

–13619 (2008).

https://doi.org/10.1021/jp712087m

Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., Payne, W. G., Smith, D. J., Robson, M. C., Comparative evaluation of silver-containing antimicrobial dressings and drugs, Int. Wound J. 4(2), 114–122 (2007).

https://doi.org/10.1111/j.1742-481X.2007.00316.x

Castro-Longoria, E., Vilchis-Nestor, A. R., AvalosBorja, M., Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa, Colloids Surfaces B Biointerfaces 83(1), 42–48 (2011).

https://doi.org/10.1016/j.colsurfb.2010.10.035

Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., Sastry, M., Synthesis of Gold Nanotriangles and

Silver Nanoparticles Using Aloe vera Plant Extract, Biotechnol. Prog. 22(2), 577–583 (2006).

https://doi.org/10.1021/bp0501423

Chen, R., Morris, H. R., Whitmore, P. M., Fast detection of hydrogen sulfide gas in the ppmv range with silver

nanoparticle films at ambient conditions, Sensors Actuators B Chem. 186, 431–438 (2013).

https://doi.org/10.1016/j.snb.2013.05.075

Chen, R., Whitmore, P. M., Silver Nanoparticle Films as Hydrogen Sulfide Gas Sensors with Applications in Art Conservation, pp 107–120(2014).

http://doi.org/10.1021/bk-2014-1183.ch006

Chopade, B., Ghosh, Patil, Ahire, Kitture, Jabgunde, Kale, Pardesi, Cameotra, Bellare, Dhavale, Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents, Int. J. Nanomedicine , 483 (2012).

https://doi.org/10.2147/IJN.S24793

Chopra, I., The increasing use of silver-based products as antimicrobial agents: a useful development or a cause

for concern?, J. Antimicrob. Chemother. 59(4), 587–590 (2007).

https://doi.org/10.1093/jac/dkm006

Christensen, L., Biosynthesis Of Silver Nanoparticles Using Murraya Koenigii (Curry Leaf): An Investigation On The Effect Of Broth Concentration In Reduction Mechanism And Particle Size, Adv.Mater. Lett. 2(6), 429–434 (2011).

https://doi.org/10.5185/amlett.2011.4256

Coe, S., Woo, W.-K., Bawendi, M., Bulović, V., Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature 420(6917), 800–803 (2002).

https://doi.org/10.1038/nature01217

Daniel, S. C. G. K., Banu, B. N., Harshiny, M., Nehru, K., Ganesh, P. S., Kumaran, S., Sivakumar, M., Ipomea carnea -based silver nanoparticle synthesis for antibacterial activity against selected human pathogens, J. Exp. Nanosci. 9(2), 197–209 (2014).

https://doi.org/10.1080/17458080.2011.654274

Danilczuk, M., Lund, A., Sadlo, J., Yamada, H., Michalik, J., Conduction electron spin resonance of small silver particles, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 63(1), 189–191 (2006).

https://doi.org/10.1016/j.saa.2005.05.002

Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., Radhakrishnan, E. K., Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area, 3 Biotech 4(2), 121–126 (2014).

https://doi.org/10.1007/s13205-013-0130-8

De Gusseme, B., Sintubin, L., Baert, L., Thibo, E., Hennebel, T., Vermeulen, G., Uyttendaele, M., Verstraete, W., Boon, N., Biogenic Silver for Disinfection of Water Contaminated with Viruses, Appl. Environ. Microbiol. 76(4), 1082–1087 (2010).

https://doi.org/10.1128/AEM.02433-09

Devabharathi, V., Palanisamy, K. L., Meenakshi Sundaram, N., Orange fruit mediated synthesis and characterisation of silver nanoparticles, Int. J. ChemTech Res. 6(7), 3473–3477 (2014).

Devika, R., Elumalai, S., Manikandan, E., Eswaramoorthy, D., Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity, Open Access Sci. Reports 1(12), 1–5 (2012).

https://doi.org/10.4172/scientificreports.5

Drzewiecka, W. W., Swapnil Gaikwad, Dariusz Laskowski, H. D., Niedojadło, J., Aniket Gade, and Mahendra, Rai, Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells, J. Biotechnol. Bioeng. 1(1), 1–7 (2014).

Durán, N., Cuevas, R., Cordi, L., Rubilar, O., Diez, M. C., Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor, Springerplus 3(1), 645 (2014).

https://doi.org/10.1186/2193-1801-3-645

Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H., Esposito, E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnology 3, 1–7 (2005).

https://doi.org/10.1186/1477-3155-3-8

Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J., Schuppler, M., Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material, Appl. Environ. Microbiol. 75(9), 2973–2976 (2009).

https://doi.org/10.1128/AEM.01658-08

EL-BAGHDADY, K. Z., EL-SHATOURY, E. H., ABDULLAH, O. M., KHALIL, M. M. H., Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26, TURKISH J. Biol. 42(4), 319–321(2018).

https://doi.org/10.3906/biy-1801-53

El-Shanshoury, A. E.-R. R., ElSilk, S. E., Ebeid, M. E., Extracellular Biosynthesis of Silver Nanoparticles Using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and Their Antimicrobial Activities, ISRN Nanotechnol. 2011, 1–7 (2011).

https://doi.org/10.5402/2011/385480

Elavazhagan, T., Elavazhagan, T., Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles, Int. J. Nanomedicine , 1265 (2011).

https://doi.org/10.2147/IJN.S18347

Ernest, V., Shiny, P. J., Mukherjee, A., Chandrasekaran, N., Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by αamylase, Carbohydr. Res. 352, 60–64 (2012).

https://doi.org/10.1016/j.carres.2012.02.009

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O., A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus, J. Biomed. Mater. Res. 52(4), 662–668 (2000).

https://doi.org/10.1002/1097-636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

Feng, Y., Chen, C.-J., Su, L.-H., Hu, S., Yu, J., Chiu, C.H., Evolution and pathogenesis of Staphylococcus aureus : lessons learned from genotyping and comparative genomics, FEMS Microbiol. Rev. 32(1), 23–37 (2008).

https://doi.org/10.1111/j.1574-6976.2007.00086.x

Fox, C. L., Modak, S. M., Mechanism of Silver Sulfadiazine Action on Burn Wound Infections, Antimicrob. Agents Chemother. 5(6), 582–588 (1974).

https://doi.org/10.1128/AAC.5.6.582

Gade, A., Gaikwad, S., Duran, N., Rai, M., Screening of different species of Phoma for the synthesis of silver

nanoparticles, Biotechnol. Appl. Biochem. 60(5), 482–493 (2013).

https://doi.org/10.1002/bab.1141

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., Rai, M., Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, Nanomedicine Nanotechnology, Biol. Med. 5(4),

–386 (2009).

https://doi.org/10.1016/j.nano.2009.06.005

Ganapathy Selvam, G., Sivakumar, K., Phycosynthesis of silver nanoparticles and photocatalytic degradation

of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V.

Lamouroux, Appl. Nanosci. 5(5), 617–622 (2015).

https://doi.org/10.1007/s13204-014-0356-8

Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., Jose-Yacaman, M., Alfalfa

Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles, Langmuir 19(4), 1357–1361 (2003).

https://doi.org/10.1021/la020835i

Gemmell, C. G., Edwards, D. I., Fraise, A. P., Gould, F. K., Ridgway, G. L., Warren, R. E., Guidelines for the

prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK,

J. Antimicrob. Chemother. 57(4), 589–608 (2006).

https://doi.org/10.1093/jac/dkl017

Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V., Kumaraguru, A. K., Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant, Appl. Nanosci. 2(2), 143–147 (2012).

https://doi.org/10.1007/s13204-011-0048-6

Gopinath, K., Gowri, S., Arumugam, A., Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties, J.Nanostructure Chem. 3(1), 68 (2013).

https://doi.org/10.1186/2193-8865-3-68

Gopinathan, P., Ashok, A. M., Selvakumar, R., Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial, Appl. Surf. Sci. 276, 717–722 (2013).

https://doi.org/10.1016/j.apsusc.2013.03.159

Gottesman, R., Shukla, S., Perkas, N., Solovyov, L. A., Nitzan, Y., Gedanken, A., Sonochemical Coating of Paper by Microbiocidal Silver Nanoparticles, Langmuir 27(2), 720–726 (2011).

https://doi.org/10.1021/la103401z

Govindaraju, K., Kiruthiga, V., Kumar, V. G., Singaravelu, G., Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum Wightii Grevilli and Their Antibacterial Effects, J. Nanosci. Nanotechnol. 9(9), 5497–5501 (2009).

https://doi.org/10.1166/jnn.2009.1199

Gowramma, B., Keerthi, U., Rafi, M., Muralidhara Rao, D., Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity, 3 Biotech 5(2), 195–201 (2015).

https://doi.org/10.1007/s13205-014-0210-4

Guo, J.-Z., Cui, H., Zhou, W., Wang, W., Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, J. Photochem. Photobiol. A Chem. 193(2–3), 89–96(2008).

https://doi.org/10.1016/j.jphotochem.2007.04.034

Hatchett, D. W., Gao, X., Catron, S. W., White, H. S., Electrochemistry of Sulfur Adlayers on Ag(111).Evidence for a Concentration- and PotentialDependent Surface-Phase Transition, J. Phys. Chem.100(1), 331–338 (1996).

https://doi.org/10.1021/jp952049a

Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X.,Wang, H., Wang, Y., Shao, W., He, N., Hong, J., Chen, C., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology 18(10), 105104(2007).

https://doi.org/10.1088/0957-4484/18/10/105104

Huang, J. W., Poynton, C. Y., Kochian, L. V., Elless, M. P., Phytofiltration of Arsenic from Drinking Water Using Arsenic-Hyperaccumulating Ferns, Environ.Sci. Technol. 38(12), 3412–3417 (2004).

https://doi.org/10.1021/es0351645

Husseiny, M. I., El-Aziz, M. A., Badr, Y., Mahmoud, M. A., Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67(3–4), 1003–1006 (2007).

https://doi.org/10.1016/j.saa.2006.09.028

Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M., Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and its Activity Against Some Human Pathogenic Bacteria, Curr. Nanosci. 4(2), 141–144 (2008).

https://doi.org/10.2174/157341308784340804

Ingle, A., Rai, M., Gade, A., Bawaskar, M., Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles, J. Nanoparticle Res. 11(8), 2079–2085 (2009).

https://doi.org/10.1007/s11051-008-9573-y

Iravani, S., Green synthesis of metal nanoparticles using plants, Green Chem. 13(10), 2638 (2011).

https://doi.org/10.1039/c1gc15386b

Jain, D., Kachhwaha, S., Jain, R., Srivastava, G., Kothari, S. L., Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of bacillus thuringiensis, Indian J. Exp. Biol. 48(11), 1152–1156(2010).

Jha, A. K., Prasad, K., Green Synthesis of Silver Nanoparticles Using Cycas Leaf, Int. J. Green Nanotechnol. Phys. Chem. 1(2), P110–P117 (2010).

https://doi.org/10.1080/19430871003684572

Jha, A. K., Prasad, K., Prasad, K., Kulkarni, A. R., Plant system: Nature’s nanofactory, Colloids Surfaces B Biointerfaces 73(2), 219–223 (2009).

https://doi.org/10.1016/j.colsurfb.2009.05.018

Jr., B. A. P., McManus, A. T., Kim, S. H., Goodwin, C. W., Burn Wound Infections: Current Status, World J. Surg. 22(2), 135–145 (1998).

https://doi.org/10.1007/s002689900361

Juibari, M. M., Abbasalizadeh, S., Jouzani, G. S., Noruzi, M., Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain, Mater. Lett. 65(6), 1014–1017 (2011).

https://doi.org/10.1016/j.matlet.2010.12.056

Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M., Gurunathan, S., Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surfaces B Biointerfaces 65(1), 150–153 (2008).

https://doi.org/10.1016/j.colsurfb.2008.02.018

Kalishwaralal, K., Deepak, V., Ram Kumar Pandian, S. B., Kottaisamy, M., BarathManiKanth, S., Kartikeyan, B.,Gurunathan, S., Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Colloids Surf. B Biointerfaces 77(2), 257–262(2010).

https://doi.org/10.1016/j.colsurfb.2010.02.007

Kandasamy, R., 9. M. Pradeepa, K. Harini, K.Ruckmani and N.Geetha (2014) Extracellular Bio-inspired synthesis of silver nanoparticles using Raspberry leaf extract against human pathogens. Int. J. Pharm. Sci. Rev. Res., 25(2), 160-165. ISSN 0976 – 044X, Int. J. Pharm.Sci.Rev.Res 25(January 2014), 160–165 (2014).

Karthiga, D., Anthony, S. P., Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range, RSC Adv. 3(37), 16765 (2013).

https://doi.org/10.1039/c3ra42308e

Kasthuri, J., Kathiravan, K., Rajendiran, N., Phyllanthinassisted biosynthesis of silver and gold nanoparticles: a novel biological approach, J. Nanoparticle Res. 11(5), 1075–1085 (2009).

https://doi.org/10.1007/s11051-008-9494-9

Kathiresan, K., Manivannan, S., Nabeel, M. A., Dhivya, B., Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment, Colloids Surf. B Biointerfaces 71(1), 133–137 (2009).

https://doi.org/10.1016/j.colsurfb.2009.01.016

Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Biosynthesis of silver nano-flakes by Crossandra infundibuliform is leaf extract, Mater. Lett. 67(1), 64–66 (2012).

https://doi.org/10.1016/j.matlet.2011.09.023

Kéki, S., Török, J., Deák, G., Daróczi, L., Zsuga, M., Silver Nanoparticles by PAMAM-Assisted Photochemical Reduction of Ag+, J. Colloid Interface Sci. 229(2), 550–553 (2000).

https://doi.org/10.1006/jcis.2000.7011

Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., Mohamed, D., Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arab. J. Chem. 7(6), 1131–1139 (2014).

https://doi.org/10.1016/j.arabjc.2013.04.007

Klasen, H. ., A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns 26(2), 131–138 (2000a).

https://doi.org/10.1016/S0305-4179(99)00116-3

Klasen, H. J., Historical review of the use of silver in the treatment of burns. I. Early uses, Burns 26(2), 117–130 (2000).

https://doi.org/10.1016/S0305-4179(99)00108-4

Klaus-Joerger, T., Joerger, R., Olsson, E., Granqvist, C.G., Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science, Trends Biotechnol. 19(1), 15–20(2001).

https://doi.org/10.1016/S0167-7799(00)01514-6

Köhler, J. M., Abahmane, L., Wagner, J., Albert, J.,Mayer, G., Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors, Chem. Eng. Sci. 63(20), 5048–5055 (2008).

https://doi.org/10.1016/j.ces.2007.11.038

Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., Paknikar, K. M., Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3, Nanotechnology 14(1), 95–100 (2003).

https://doi.org/10.1088/0957-4484/14/1/321

Królikowska, A., Kudelski, A., Michota, A., Bukowska, J., SERS studies on the structure of thioglycolic acid monolayers on silver and gold, Surf. Sci. 532–535, 227–232 (2003).

https://doi.org/10.1016/S0039-6028(03)00094-3

Kumar, S. P., Darshit, P., Ankita, P., Palak, D., Ram, P., Pradip, P., Kaliaperumal, S., Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect, African J. Biotechnol. 10(41), 8122–8130 (2011).

https://doi.org/10.5897/AJB11.394

Larkin Mchugh, G., Moellering, R., Hopkins, C., Swartz, M., SALMONELLA TYPHIMURIUM RESISTANT TO SILVER NITRATE, CHLORAMPHENICOL, AND AMPICILLIN, Lancet 305(7901), 235–240 (1975).

https://doi.org/10.1016/S0140-6736(75)91138-1

Law, N., Ansari, S., Livens, F. R., Renshaw, J. C., Lloyd, J. R., Formation of Nanoscale Elemental Silver Particles via Enzymatic Reduction by Geobacter sulfurreducens, Appl. Environ. Microbiol. 74(22), 7090–7093 (2008).

https://doi.org/10.1128/AEM.01069-08

Lengke, M. F., Fleet, M. E., Southam, G., Biosynthesis of Silver Nanoparticles by Filamentous Cyanobacteria from a Silver(I) Nitrate Complex, Langmuir 23(5), 2694–2699 (2007).

https://doi.org/10.1021/la0613124

Linga Rao, M., Savithramma, N., Biological synthesis of silver nanoparticles using Svensonia Hyderabadensis leaf extract and evaluation of their antimicrobial efficacy, J. Pharm. Sci. Res. 3(3), 1117–1121 (2011).

Liu, P., Zhao, M., Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Appl. Surf. Sci. 255(7), 3989–3993 (2009).

https://doi.org/10.1016/j.apsusc.2008.10.094

Liu, Y.-C., Lin, L.-H., New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods, Electrochem. commun. 6(11), 1163–1168 (2004).

https://doi.org/10.1016/j.elecom.2004.09.010

Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R. I., Silver nanoparticledecorated porous ceramic composite for water treatment, J. Memb. Sci. 331(1–2), 50–56 (2009).

https://doi.org/10.1016/j.memsci.2009.01.007

Mahitha, B., Raju, B. D. P., Dillip, G. R., Reddy, C. M., Mallikarjuna, K., Manoj, L., Priyanka, S., Rao, K. J., Sushma, N. J., Biosynthesis, characterization and antimicrobial studies of AgNPs extract from Bacopa monniera whole plant, Dig. J. Nanomater. Biostructures 6(2), 587–594 (2011).

Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., Mukherjee, P., The use of microorganisms for the formation of metal nanoparticles and their application, Appl. Microbiol. Biotechnol. 69(5), 485–492 (2006).

https://doi.org/10.1007/s00253-005-0179-3

Manikprabhu, D., Lingappa, K., Microwave Assisted Rapid and Green Synthesis of Silver Nanoparticles Using a Pigment Produced by Streptomyces coelicolor klmp33, Bioinorg. Chem. Appl. 2013, 1–5 (2013).

https://doi.org/10.1155/2013/341798

Manimegalai, G., Shantha Kumar, S., Sharma, C., Pesticide mineralization in water using silver nanoparticles, Int. J. Chem. Sci. 9(3), 1463–1471(2011).

Manimegalai, G., Shanthakumar, S., Sharma, C., Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support, Int. Nano Lett. 4(2), 105 (2014).

https://doi.org/10.1007/s40089-014-0105-8

Masum, M. M. I., Siddiqa, M. M., Ali, K. A., Zhang, Y., Abdallah, Y., Ibrahim, E., Qiu, W., Yan, C., Li, B., Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe, Front Microbiol. 26 April(2019).

https://doi.org/10.3389/fmicb.2019.00820

Matsumura, Y., Yoshikata, K., Kunisaki, S., Tsuchido, T., Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate, Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).

https://doi.org/10.1128/AEM.69.7.4278-4281.2003

Min, J.-S., Kim, K.-S., Kim, S.-W., Jung, J.-H., Lamsal, K., Kim, S.-B., Jung, M.-Y., Lee, Y.-S., Effects of Colloidal Silver Nanoparticles on SclerotiumForming Phytopathogenic Fungi, Plant Pathol. J. 25(4), 376–380 (2009).

https://doi.org/10.5423/PPJ.2009.25.4.376

Mishra, A., Tripathy, S. K., Yun, S.-I., Bio-Synthesis of Gold and Silver Nanoparticles from Candida guilliermondii and Their Antimicrobial Effect Against Pathogenic Bacteria, J. Nanosci. Nanotechnol. 11(1), 243–248 (2011).

https://doi.org/10.1166/jnn.2011.3265

Mohammed Fayaz, A., Balaji, K., Kalaichelvan, P. T., Venkatesan, R., Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles, Colloids Surfaces B Biointerfaces 74(1), 123–126 (2009).

https://doi.org/10.1016/j.colsurfb.2009.07.002

Mohanpuria, P., Rana, N. K., Yadav, S. K., Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanoparticle Res. 10(3), 507–517(2008).

https://doi.org/10.1007/s11051-007-9275-x

Mokhtari, N., Daneshpajouh, S., Seyedbagheri, S.,Atashdehghan, R., Abdi, K., Sarkar, S., Minaian, S.,Shahverdi, H. R., Shahverdi, A. R., Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella neumonia: The effects of visible-light irradiation and the liquid mixing process, Mater. Res. Bull. 44(6), 1415–1421 (2009).

https://doi.org/10.1016/j.materresbull.2008.11.021

Monafo, W. W., Freedman, B., Topical Therapy for Burns, Surg. Clin. North Am. 67(1), 133–145 (1987).

https://doi.org/10.1016/S0039-6109(16)44137-X

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J., The bactericidal effect of silver nanoparticles, Nanotechnology 16(10), 2346–2353 (2005).

https://doi.org/10.1088/0957-4484/16/10/059

MOYER, C. A., Treatment of Large Human Burns With 0.5% Silver Nitrate Solution, Arch. Surg. 90(6), 812(1965).

https://doi.org/10.1001/archsurg.1965.01320120014002

Mpenyana-Monyatsi, L., Mthombeni, N. H., Onyango, M. S., Momba, M. N. B., Cost-Effective Filter Materials Coated with Silver Nanoparticles for the Removal of Pathogenic Bacteria in Groundwater, Int. J. Environ. Res. Public Health 9(1), 244–271 (2012).

https://doi.org/10.3390/ijerph9010244

Mude, N., Ingle, A., Gade, A., Rai, M., Synthesis of Silver Nanoparticles Using Callus Extract of Carica papaya — A First Report, J. Plant Biochem. Biotechnol. 18(1), 83–86 (2009).

https://doi.org/10.1007/BF03263300

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., Sastry, M., FungusMediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis, Nano Lett. 1(10), 515–519 (2001).

https://doi.org/10.1021/nl0155274

Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., Kale, S. P., Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum, Nanotechnology 19(7), 075103 (2008).

https://doi.org/10.1088/0957-4484/19/7/075103

Navazi, Z. R., Pazouki, M., Halek, F. S., Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigatus, Iran. J. Biotechnol. 8(1), 56–61 (2010).

Nithya, R., Ragunathan, R., Decolorization of the dye congored by Pleurotus sajor caju silver nanoparticle, 9, 12–15 (2011).

Patil, H. B., Borse, S. V, Patil, D. R., Patil, U. K., Patil, H. M., Synthesis of Silver Nanoparticles by Microbial Method and Their Characterization, Arch. Phys. Res.2(3), 153–158 (2011).

Petit, C., Lixon, P., Pileni, M. P., In situ synthesis of silver nanocluster in AOT reverse micelles, J. Phys. Chem. 97(49), 12974–12983 (1993).

https://doi.org/10.1021/j100151a054

Pirtarighat, S., Ghannadnia, M., Baghshahi, S., Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment, J. Nanostructure Chem. 9(1), 1–9 (2019).

https://doi.org/10.1007/s40097-018-0291-4

Priyadarshini, S., Gopinath, V., Meera Priyadharsshini, N., MubarakAli, D., Velusamy, P., Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application, Colloids Surfaces B Biointerfaces 102, 232–237 (2013).

https://doi.org/10.1016/j.colsurfb.2012.08.018

Pulit, J., Banach, M., Szczygłowska, R., Bryk, M., Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor, Acta Biochim. Pol. 60(4), 795–798 (2013).

https://doi.org/10.18388/abp.2013_2060

Qian, Y., Yu, H., He, D., Yang, H., Wang, W., Wan, X., Wang, L., Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi, Bioprocess Biosyst. Eng. 36(11), 1613–1619 (2013).

https://doi.org/10.1007/s00449-013-0937-z

Rai, M., Yadav, A., Gade, A., Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27(1), 76–83 (2009).

https://doi.org/10.1016/j.biotechadv.2008.09.002

Ram, Prasad; Samy, V. S. K. S. P. A. V., BIOGENIC SYNTHESIS OF SILVER NANOPARTICLES FROM THE LEAF EXTRACT OF SYZYGIUM CUMINI(L.)AND ITS ANTIBACTERIAL, Int. J. pharma Bio Sci. 3(4), 745–752 (2012).

Raudabaugh, D. B., Tzolov, M. B., Calabrese, J. P., Overton, B. E., Synthesis of Silver Nanoparticles by a Bryophilous Rhizoctonia Species, Nanomater. Nanotechnol. 3, 2 (2013).

https://doi.org/10.5772/56207

S. Abdeen S. Geo Sukanya Praseetha P.K., D., International Journal of Nano Dimension Biosynthesis of Silver nanoparticles from Actinomycetes for therapeutic applications, Int. J. Nano Dimens. 5(2), 155–162 (2014).

Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S.,

Chakraborty, A., Acharya, K., Production Of Silver Nanoparticles By A Phytopathogenic Fungus Bipolaris Nodulosa And Its Antimicrobial Activity, Dig. J. Nanomater. Biostructures 5(4), 887–895(2010).

Saifuddin, N., Nian, C. Y., Zhan, L. W., Ning, K. X.,Chitosan-silver Nanoparticles Composite as Point-ofuse Drinking Water Filtration System for Household to Remove Pesticides in Water, Asian J. Biochem. 6(2), 142–159 (2011).

https://doi.org/10.3923/ajb.2011.142.159

Saifuddin, N., Wong, C. W., Yasumira, A. A. N., Rapid Biosynthesis of Silver Nanoparticles Using Culture Supernatant of Bacteria with Microwave Irradiation, E-Journal Chem. 6(1), 61–70 (2009).

https://doi.org/10.1155/2009/734264

Salehi-Khojin, A., Jhong, H.-R. M., Rosen, B. A., Zhu, W., Ma, S., Kenis, P. J. A., Masel, R. I., Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis, J. Phys. Chem. C 117(4), 1627–1632 (2013).

https://doi.org/10.1021/jp310509z

Samadi, N., Golkaran, D., Eslamifar, A., Jamalifar, H., Fazeli, M. R., Mohseni, F. A., Intra/Extracellular Biosynthesis of Silver Nanoparticles by an Autochthonous Strain of Proteus mirabilis Isolated from photographic Waste, J. Biomed. Nanotechnol. 5(3), 247–253 (2009).

https://doi.org/10.1166/jbn.2009.1029

Sanghi, R., Verma, P., Biomimetic synthesis and characterization of protein capped silver nanoparticles, Bioresour. Technol. 100(1), 501–504 (2009).

https://doi.org/10.1016/j.biortech.2008.05.048

Satapathy, M. K., Banerjee, P., Das, P., Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent, Appl. Nanosci. 5(1), 1–9 (2015).

https://doi.org/10.1007/s13204-013-0286-x

Sathyavathi, R., Krishna, M. B., Rao, S. V., Saritha, R., Rao, D. N., Biosynthesis of Silver Nanoparticles Using oriandrum Sativum Leaf Extract and Their Application in Nonlinear Optics, Adv. Sci. Lett. 3(2),138–143 (2010).

https://doi.org/10.1166/asl.2010.1099

Saxena, A., Tripathi, R. M., Zafar, F., Singh, P., Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity, Mater.Lett. 67(1), 91–94 (2012).

https://doi.org/10.1016/j.matlet.2011.09.038

Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., Pandey, A., Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain, Process Biochem. 44(8), 939–943 (2009).

https://doi.org/10.1016/j.procbio.2009.04.009

Shankar, S. S., Ahmad, A., Sastry, M., Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles, Biotechnol. Prog. 19(6), 1627–1631 (2003).

https://doi.org/10.1021/bp034070w

Sharma, V. K., Yngard, R. A., Lin, Y., Silver nanoparticles: Green synthesis and their antimicrobial activities, Adv.Colloid Interface Sci.145(1–2), 83–96 (2009).

https://doi.org/10.1016/j.cis.2008.09.002

Shivaji, S., Madhu, S., Singh, S., Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic acteria, Process Biochem. 46(9),1800–1807 (2011).

https://doi.org/10.1016/j.procbio.2011.06.008

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D., Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology 18(22), 225103 (2007).

https://doi.org/10.1088/0957-4484/18/22/225103

Singh, A., Jain, D., Upadhyay, M. K., Khandelwal, N., Verma, H. N., Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities, Dig. J. Nanomater. Biostructures 5(2), 483–489 (2010).

Singh, P., R. B. Raja, Biological Synthesis and Characterization of Silver Nanoparticles Using the Fungus Trichoderma harzianum, Asian J. Exp. Biol. Sci. 2(4), 600–605 (2011).

Singh, R., Shedbalkar, U. U., Wadhwani, S. A., Chopade, B. A., Bacteriagenic silver nanoparticles: synthesis,

mechanism, and applications, Appl. Microbiol. Biotechnol. 99(11), 4579–4593 (2015).

https://doi.org/10.1007/s00253-015-6622-1

Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W., Boon, N., Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles, Appl. Microbiol. Biotechnol. 84(4), 741–749 (2009).

https://doi.org/10.1007/s00253-009-2032-6

Smetana, A. B., Klabunde, K. J., Sorensen, C. M., Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation, J. Colloid Interface Sci. 284(2), 521–526 (2005).

https://doi.org/10.1016/j.jcis.2004.10.038

Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci.275(1), 177–182 (2004).

https://doi.org/10.1016/j.jcis.2004.02.012

Srivastava, P., Bragança, J., Ramanan, S. R., Kowshik, M., Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3,Extremophiles 17(5), 821–831 (2013).

https://doi.org/10.1007/s00792-013-0563-3

Tang, Y., Li, Y., Sun, Y., Wang, J., Chen, Y., Yang, X., Wan, P., Energy-saving electrolysis of sodium carbonate with a silver nanoparticles/carbon oxygen reduction cathode, Electrochem. commun. 27, 108–111 (2013).

https://doi.org/10.1016/j.elecom.2012.11.024

Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K. M. K., Bagot, P. A. J., Marquis, E. A., Smith, G. D. W., Tsang, S. C. E., Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst, Nat. Nanotechnol. 6(5),302–307 (2011).

https://doi.org/10.1038/nnano.2011.42

Textor, T., Fouda, M. M. G., Mahltig, B., Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction, Appl. Surf. Sci. 256(8), 2337–2342 (2010).

https://doi.org/10.1016/j.apsusc.2009.10.063

Thirumurugan, G., Veni, V. S., Ramachandran, S., Seshagiri Rao, J. V. L. N., Dhanaraju, M. D., Superior Wound Healing Effect of Topically Delivered Silver Nanoparticle Formulation Using Eco-Friendly Potato Plant Pathogenic Fungus: Synthesis and Characterization, J. Biomed. Nanotechnol. 7(5), 659–666 (2011).

https://doi.org/10.1166/jbn.2011.1336

Tian, J., Wong, K. K. Y., Ho, C.-M., Lok, C.-N., Yu, W. Y., Che, C.-M., Chiu, J.-F., Tam, P. K. H., Topical Delivery of Silver Nanoparticles Promotes Wound Healing, ChemMedChem 2(1), 129–136 (2007).

https://doi.org/10.1002/cmdc.200600171

Tripathi, R. M., Rana, D., Shrivastav, A., Singh, R. P., Shrivastav, B. R., Biogenic Synthesis of Silver Nanoparticles Using Saraca indica Leaf Extract and Evaluation of Their Antibacterial Activity, Nano Biomed Eng. 5(1), 50-56 (2013).

https://doi.org/10.5101/nbe.v5i1.p50-56

Vahabi, K., Mansoori, G. A., Karimi, S., Biosynthesis of Silver Nanoparticles by Fungus Trichoderma Reesei (A Route for Large-Scale Production of AgNPs), Insciences J. , 65–79 (2011).

https://doi.org/10.5640/insc.010165

Vaidyanathan, R., Gopalram, S., Kalishwaralal, K.,Deepak, V., Pandian, S. R. K., Gurunathan, S., Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity, Colloids Surfaces B Biointerfaces 75(1), 335–341 (2010).

https://doi.org/10.1016/j.colsurfb.2009.09.006

Vanaja, M., Annadurai, G., Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity, Appl. Nanosci. 3(3), 217–223 (2013).

https://doi.org/10.1007/s13204-012-0121-9

Vasileva, P., Donkova, B., Karadjova, I., Dushkin, C., Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonancebased sensor of hydrogen peroxide, Colloids Surfaces A Physicochem. Eng. Asp. 382(1–3), 203–210 (2011).

https://doi.org/10.1016/j.colsurfa.2010.11.060

Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F.W., Yang, E. F. C., Jeyakumar, N., Dhanaraj, S. A., Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities, J. Saudi Chem. Soc. 15(2),113–120 (2011).

https://doi.org/10.1016/j.jscs.2010.06.004

Verma, V. C., Kharwar, R. N., Singh, S. K., Solanki, R.,Prakash, S., Erratum to: Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer, Nanoscale Res. Lett. 6(1), 261 (2011).

https://doi.org/10.1186/1556-276X-6-261

Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P.V., Nachane, R. P., Paralikar, K. M.,Balasubramanya, R. H., Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, Mater. Lett. 61(6), 1413–1418 (2007).

https://doi.org/10.1016/j.matlet.2006.07.042

Vorobyova, S. A., Lesnikovich, A. I., Sobal, N. S., Preparation of silver nanoparticles by interphase reduction, Colloids Surfaces A Physicochem. Eng. Asp. 152(3), 375–379 (1999).

https://doi.org/10.1016/S0927-7757(98)00861-9

W., R., R., L., S., K., D., M., B., K., Phytosynthesis of Silver Nanoparticle Using Gliricidia sepium (Jacq.), Curr. Nanosci. 5(1), 117–122 (2009).

https://doi.org/10.2174/157341309787314674

Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Kong, P., Liu, H., Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3, Bioresour. Technol. 103(1), 273–278 (2012).

https://doi.org/10.1016/j.biortech.2011.09.118

Yu, D.-G., Formation of colloidal silver nanoparticles stabilized by Na+–poly(γ-glutamic acid)–silver nitrate complex via chemical reduction process, Colloids Surf. B Biointerfaces 59(2), 171–178(2007).

https://doi.org/10.1016/j.colsurfb.2007.05.007

Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., Zheng, S., Biosorption and bioreduction of diamine silver complex by Corynebacterium, J. Chem. Technol. Biotechnol. 80(3), 285–290 (2005).

https://doi.org/10.1002/jctb.1191

Zhao, W., Zhang, Y., Du, B., Wei, D., Wei, Q., Zhao, Y., Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria, Bioresour. Technol. 142, 240–245 (2013).

https://doi.org/10.1016/j.biortech.2013.05.042

Contact Us

Powered by

Powered by OJS